Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(18): e202302521, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-36891989

RESUMO

Organic nitrates are broadly applied as pharmaceuticals (acting as efficient nitric oxide donor), energetic materials, building blocks in organic synthesis, etc. However, practical and direct methods to access organic nitrates efficiently are still rare, mainly due to the lack of powerful nitrooxylating reagents. Herein, we report bench-stable and highly reactive noncyclic hypervalent iodine nitrooxylating reagents, oxybis(aryl-λ3 -iodanediyl) dinitrates (OAIDNs, 2), which are prepared just by using aryliodine diacetate and HNO3 . The reagents are used to achieve a mild and operationally simple protocol to access diverse organic nitrates. By employing of 2, zinc-catalyzed regioselective nitrooxylation of cyclopropyl silyl ethers is realized efficiently to access the corresponding ß-nitrooxy ketones with high functional-group tolerance. Moreover, a series of direct and catalyst-free nitrooxylations of enolizable C-H bonds are carried out smoothly to afford the desired organic nitrates within minutes by just mixing the substrates with 2 in dichloromethane.

2.
Polymers (Basel) ; 13(1)2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33466550

RESUMO

Polymethyl methacrylate plates are widely applied to buildings, producing significant fire hazards. It lacks a theoretical basis for the fire risk assessment of polymethyl methacrylate in concave building facades. Therefore, experimental methods are used to investigate combustion characteristics of discrete polymethyl methacrylate plates in a concave building facade. Influences of fuel coverage and structure factor are investigated, which is scant in previous works. When structure factor is invariable, average flame height increases first and then decreases as fuel coverage increases, and the turning point is between 0.64 and 0.76. In total, three different patterns of pyrolysis front propagation are first observed for different fuel coverages. Flame spread rate first increases and then decreases as fuel coverage rises, and the turning point is also between 0.64 and 0.76. When fuel coverage is invariable, the flame spread rate first increases and then decreases with increasing structure factor, and the turning point is 1.2. A model for predicting the flame spread rate of discrete polymethyl methacrylate is also developed. The predicted values are consistent with experimental results. Fuel spread rate of discrete polymethyl methacrylate rises as the fuel coverage increases. The above results are beneficial for thermal hazard evaluation and fire safety design of polymethyl methacrylate used in buildings.

3.
Polymers (Basel) ; 12(12)2020 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-33261199

RESUMO

Polymethyl methacrylate (PMMA) plates are widely used in buildings or factories for natural lighting. Commonly PMMA plates are installed as a discrete array. However, PMMA plates are very susceptible to fire. Therefore, experimental study on flammability and fire hazard of vertical PMMA plate array with different overlap length (D) was conducted in this work. The average flame height (Hf) increases first and then decreases with an increase in the overlap length, and reaches the maximum when D = 40 mm. The discrete flame spread speed (Vf) also rises first and then drops with the increase of D, which is mainly due to the heat transfer from the PMMA flame to the next plate. A model for predicting the flame spread rate of discrete PMMA array is established. The predicted results are consistent with experimental ones, with a predicted error smaller than 15%. The average temperature of flame zone rises first and then drops as D increases, reaching the maximum when D = 40 mm. This leads to the same changing trend of radiative heat flux. Results obtained in this work provide a reference for fire hazard evaluation and fire safety design of PMMA plates employed in buildings or industrial sites.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa