Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 719
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Immunol Rev ; 321(1): 280-299, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37850797

RESUMO

Neutrophils are important in the context of innate immunity and actively contribute to the progression of diverse autoimmune disorders. Distinct death mechanisms of neutrophils may exhibit specific and pivotal roles in autoimmune diseases and disease pathogenesis through the orchestration of immune homeostasis, the facilitation of autoantibody production, the induction of tissue and organ damage, and the incitement of pathological alterations. In recent years, more studies have provided in-depth examination of various neutrophil death modes, revealing nuances that challenge conventional understanding and underscoring their potential clinical utility in diagnosis and treatment. This review explores the multifaceted processes and characteristics of neutrophil death, with a focus on tailored investigations within various autoimmune diseases. It also highlights the potential interplay between neutrophil death and the landscape of autoimmune disorders. The review encapsulates the pertinent pathways implicated in various neutrophil death mechanisms across diverse autoimmune diseases while also charts possible avenues for future research.


Assuntos
Doenças Autoimunes , Neutrófilos , Humanos , Imunidade Inata
2.
Proc Natl Acad Sci U S A ; 120(21): e2217189120, 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37186841

RESUMO

Protonation reactions involving organometallic complexes are ubiquitous in redox chemistry and often result in the generation of reactive metal hydrides. However, some organometallic species supported by η5-pentamethylcyclopentadienyl (Cp*) ligands have recently been shown to undergo ligand-centered protonation by direct proton transfer from acids or tautomerization of metal hydrides, resulting in the generation of complexes bearing the uncommon η4-pentamethylcyclopentadiene (Cp*H) ligand. Here, time-resolved pulse radiolysis (PR) and stopped-flow spectroscopic studies have been applied to examine the kinetics and atomistic details involved in the elementary electron- and proton-transfer steps leading to complexes ligated by Cp*H, using Cp*Rh(bpy) as a molecular model (where bpy is 2,2'-bipyridyl). Stopped-flow measurements coupled with infrared and UV-visible detection reveal that the sole product of initial protonation of Cp*Rh(bpy) is [Cp*Rh(H)(bpy)]+, an elusive hydride complex that has been spectroscopically and kinetically characterized here. Tautomerization of the hydride leads to the clean formation of [(Cp*H)Rh(bpy)]+. Variable-temperature and isotopic labeling experiments further confirm this assignment, providing experimental activation parameters and mechanistic insight into metal-mediated hydride-to-proton tautomerism. Spectroscopic monitoring of the second proton transfer event reveals that both the hydride and related Cp*H complex can be involved in further reactivity, showing that [(Cp*H)Rh] is not necessarily an off-cycle intermediate, but, instead, depending on the strength of the acid used to drive catalysis, an active participant in hydrogen evolution. Identification of the mechanistic roles of the protonated intermediates in the catalysis studied here could inform design of optimized catalytic systems supported by noninnocent cyclopentadienyl-type ligands.

3.
Cereb Cortex ; 34(2)2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38300184

RESUMO

T1 image is a widely collected imaging sequence in various neuroimaging datasets, but it is rarely used to construct an individual-level brain network. In this study, a novel individualized radiomics-based structural similarity network was proposed from T1 images. In detail, it used voxel-based morphometry to obtain the preprocessed gray matter images, and radiomic features were then extracted on each region of interest in Brainnetome atlas, and an individualized radiomics-based structural similarity network was finally built using the correlational values of radiomic features between any pair of regions of interest. After that, the network characteristics of individualized radiomics-based structural similarity network were assessed, including graph theory attributes, test-retest reliability, and individual identification ability (fingerprinting). At last, two representative applications for individualized radiomics-based structural similarity network, namely mild cognitive impairment subtype discrimination and fluid intelligence prediction, were exemplified and compared with some other networks on large open-source datasets. The results revealed that the individualized radiomics-based structural similarity network displays remarkable network characteristics and exhibits advantageous performances in mild cognitive impairment subtype discrimination and fluid intelligence prediction. In summary, the individualized radiomics-based structural similarity network provides a distinctive, reliable, and informative individualized structural brain network, which can be combined with other networks such as resting-state functional connectivity for various phenotypic and clinical applications.


Assuntos
Encéfalo , Radiômica , Reprodutibilidade dos Testes , Encéfalo/diagnóstico por imagem , Substância Cinzenta/diagnóstico por imagem , Neuroimagem
4.
Proc Natl Acad Sci U S A ; 119(18): e2117633119, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35476526

RESUMO

Surface sensing is a critical process that promotes the transition to a biofilm lifestyle. Several surface-sensing mechanisms have been described for a range of species, most involving surface appendages, such as flagella and pili. Pseudomonas aeruginosa uses the Wsp chemosensory-like signal transduction pathway to sense surfaces and promote biofilm formation. The methyl-accepting chemotaxis protein WspA recognizes an unknown surface-associated signal and initiates a phosphorylation cascade that activates the diguanylate cyclase WspR. We conducted a screen for Wsp-activating compounds and found that chemicals that impact the cell envelope induce Wsp signaling, increase intracellular c-di-GMP levels, and can promote surface attachment. To isolate the Wsp system from other P. aeruginosa surface-sensing systems, we heterologously expressed it in Escherichia coli and found it sufficient for sensing surfaces and the chemicals identified in our screen. Using well-characterized reporters for different E. coli cell envelope stress responses, we then determined that Wsp sensitivity overlapped with multiple E. coli cell envelope stress-response systems. Using mutational and CRISPRi analysis, we found that misfolded proteins in the periplasm appear to be a major stimulus of the Wsp system. Finally, we show that surface attachment appears to have an immediate, observable effect on cell envelope integrity. Collectively, our results provide experimental evidence that cell envelope stress represents an important feature of surface sensing in P. aeruginosa.


Assuntos
Parede Celular , Pseudomonas aeruginosa , Biofilmes , Membrana Celular/metabolismo , Periplasma , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo
5.
Anal Chem ; 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38335322

RESUMO

The configuration elucidation of organic molecules continues to pose significant challenges in studies involving stereochemistry. Nuclear magnetic resonance (NMR) techniques are powerful for obtaining such structural information. Anisotropic NMR techniques, such as measurement of residual dipolar couplings (RDCs) and residual chemical shift anisotropies (RCSAs), complementing isotropic NMR parameters, provide relative configuration information. RCSAs provide valuable structural information, especially for nonprotonated carbons, yet have been severely underutilized due to the lack of an easily operational alignment medium capable of rapid transition from anisotropic to isotropic environments, especially in aqueous conditions. In this study, an oligopeptide-based alignment media (FK)4 is presented for RCSA measurements. Temperature variation manipulates the assembly of (FK)4, yielding tunable anisotropic and isotropic phases without the requirement of any special devices or time-consuming correction procedures during data analysis. Decent observed ΔΔRCSA values from sp3 carbons benefit the utilization of RCSA measurements in the structural elucidation of organic molecules highly composed with sp3 carbons. Moreover, the (FK)4 alignment medium is applicable for both RDC and RCSA measurements in one sample, further advancing the configuration analysis of molecules of interest.

6.
Hum Brain Mapp ; 45(7): e26695, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38727010

RESUMO

Human infancy is marked by fastest postnatal brain structural changes. It also coincides with the onset of many neurodevelopmental disorders. Atlas-based automated structure labeling has been widely used for analyzing various neuroimaging data. However, the relatively large and nonlinear neuroanatomical differences between infant and adult brains can lead to significant offsets of the labeled structures in infant brains when adult brain atlas is used. Age-specific 1- and 2-year-old brain atlases covering all major gray and white matter (GM and WM) structures with diffusion tensor imaging (DTI) and structural MRI are critical for precision medicine for infant population yet have not been established. In this study, high-quality DTI and structural MRI data were obtained from 50 healthy children to build up three-dimensional age-specific 1- and 2-year-old brain templates and atlases. Age-specific templates include a single-subject template as well as two population-averaged templates from linear and nonlinear transformation, respectively. Each age-specific atlas consists of 124 comprehensively labeled major GM and WM structures, including 52 cerebral cortical, 10 deep GM, 40 WM, and 22 brainstem and cerebellar structures. When combined with appropriate registration methods, the established atlases can be used for highly accurate automatic labeling of any given infant brain MRI. We demonstrated that one can automatically and effectively delineate deep WM microstructural development from 3 to 38 months by using these age-specific atlases. These established 1- and 2-year-old infant brain DTI atlases can advance our understanding of typical brain development and serve as clinical anatomical references for brain disorders during infancy.


Assuntos
Atlas como Assunto , Encéfalo , Imagem de Tensor de Difusão , Substância Cinzenta , Substância Branca , Humanos , Lactente , Pré-Escolar , Masculino , Substância Branca/diagnóstico por imagem , Substância Branca/anatomia & histologia , Substância Branca/crescimento & desenvolvimento , Feminino , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/crescimento & desenvolvimento , Substância Cinzenta/anatomia & histologia , Imagem de Tensor de Difusão/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/crescimento & desenvolvimento , Encéfalo/anatomia & histologia , Processamento de Imagem Assistida por Computador/métodos
7.
Chembiochem ; 25(5): e202300727, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38100267

RESUMO

The abnormal aggregation of proteins is a significant pathological hallmark of diseases, such as the amyloid formation associated with fused in sarcoma protein (FUS) in frontotemporal lobar degeneration and amyotrophic lateral sclerosis diseases. Understanding which cellular components and how these components regulate the process of abnormal protein aggregation in living organisms is crucial for the prevention and treatment of neurodegenerative diseases. MOAG-4/SERF is a conserved family of proteins with rich positive charged residues, which was initially identified as an enhancer for the formation of amyloids in C. elegans. Knocking out SERF impedes the amyloid formation of various proteins, including α-synuclein and ß-amyloid, which are linked to Parkinson's and Alzheimer's diseases, respectively. However, recent studies revealed SERF exhibited dual functions, as it could both promote and inhibit the fibril formation of the neurodegenerative disease-related amyloidogenic proteins. The connection between functions and structure basis of SERF in regulating the amyloid formation is still unclear. This review will outline the hallmark proteins in neurodegenerative diseases, summarize the contradictory role of the SERF protein family in promoting and inhibiting the aggregation of neurodegenerative proteins, and finally explore the potential structural basis and functional selectivity of the SERF protein.


Assuntos
Doença de Alzheimer , Proteínas de Caenorhabditis elegans , Doenças Neurodegenerativas , Animais , Caenorhabditis elegans , Proteínas Amiloidogênicas , Peptídeos beta-Amiloides
8.
J Virol ; 97(4): e0021023, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-36975780

RESUMO

Porcine enteric alphacoronavirus (PEAV) is a new bat HKU2-like porcine coronavirus, and its endemic outbreak has caused severe economic losses to the pig industry. Its broad cellular tropism suggests a potential risk of cross-species transmission. A limited understanding of PEAV entry mechanisms may hinder a rapid response to potential outbreaks. This study analyzed PEAV entry events using chemical inhibitors, RNA interference, and dominant-negative mutants. PEAV entry into Vero cells depended on three endocytic pathways: caveolae, clathrin, and macropinocytosis. Endocytosis requires dynamin, cholesterol, and a low pH. Rab5, Rab7, and Rab9 GTPases (but not Rab11) regulate PEAV endocytosis. PEAV particles colocalize with EEA1, Rab5, Rab7, Rab9, and Lamp-1, suggesting that PEAV translocates into early endosomes after internalization, and Rab5, Rab7, and Rab9 regulate trafficking to lysosomes before viral genome release. PEAV enters porcine intestinal cells (IPI-2I) through the same endocytic pathway, suggesting that PEAV may enter various cells through multiple endocytic pathways. This study provides new insights into the PEAV life cycle. IMPORTANCE Emerging and reemerging coronaviruses cause severe human and animal epidemics worldwide. PEAV is the first bat-like coronavirus to cause infection in domestic animals. However, the PEAV entry mechanism into host cells remains unknown. This study demonstrates that PEAV enters into Vero or IPI-2I cells through caveola/clathrin-mediated endocytosis and macropinocytosis, which does not require a specific receptor. Subsequently, Rab5, Rab7, and Rab9 regulate PEAV trafficking from early endosomes to lysosomes, which is pH dependent. The results advance our understanding of the disease and help to develop potential new drug targets against PEAV.


Assuntos
Alphacoronavirus , Cavéolas , Clatrina , Pinocitose , Internalização do Vírus , Proteínas rab de Ligação ao GTP , Alphacoronavirus/fisiologia , Proteínas rab de Ligação ao GTP/metabolismo , Endossomos/metabolismo , Infecções por Coronavirus/metabolismo , Concentração de Íons de Hidrogênio , Dinaminas/metabolismo , Cavéolas/metabolismo , Colesterol/metabolismo , Clatrina/metabolismo , Pinocitose/fisiologia , Células Vero , Chlorocebus aethiops , Animais
9.
Pharmacol Res ; 205: 107230, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38788820

RESUMO

Immune checkpoint inhibitors (ICIs) are essential for urothelial carcinoma (UC) treatment. Fibroblast growth factor receptor (FGFR) alterations, as common oncogenic drivers in UC, have been reported to drive T cell depletion of UC immune microenvironment via up-regulating FGFR signaling, which indicated FGFR alterations potentially result in reduced response to ICIs. In addition, the selective pan-FGFR inhibitor showed better clinical benefit in clinical trials, indicating FGFR has emerged as critical therapeutic target via inhibiting FGFR signaling. The present study aims to evaluate prognosis and response to ICIs between FGFR-altered UC patients and FGFR-wildtype UC patients via 1963 UC patients and offers new insights into personalized precision therapy and combination therapy for UC.


Assuntos
Inibidores de Checkpoint Imunológico , Receptores de Fatores de Crescimento de Fibroblastos , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Receptores de Fatores de Crescimento de Fibroblastos/antagonistas & inibidores , Imunoterapia/métodos , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/imunologia , Neoplasias Urológicas/tratamento farmacológico , Neoplasias Urológicas/imunologia , Prognóstico , Feminino , Masculino , Carcinoma de Células de Transição/tratamento farmacológico , Carcinoma de Células de Transição/imunologia
10.
Anal Bioanal Chem ; 416(9): 2319-2334, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38240793

RESUMO

Metabolism is a fundamental process that underlies human health and diseases. Nuclear magnetic resonance (NMR) techniques offer a powerful approach to identify metabolic processes and track the flux of metabolites at the molecular level in living systems. An in vitro study through in-cell NMR tracks metabolites in real time and investigates protein structures and dynamics in a state close to their most natural environment. This technique characterizes metabolites and proteins involved in metabolic pathways in prokaryotic and eukaryotic cells. In vivo magnetic resonance spectroscopy (MRS) enables whole-organism metabolic monitoring by visualizing the spatial distribution of metabolites and targeted proteins. One limitation of these NMR techniques is the sensitivity, for which a possible improved approach is through isotopic enrichment or hyperpolarization methods, including dynamic nuclear polarization (DNP) and parahydrogen-induced polarization (PHIP). DNP involves the transfer of high polarization from electronic spins of radicals to surrounding nuclear spins for signal enhancements, allowing the detection of low-abundance metabolites and real-time monitoring of metabolic activities. PHIP enables the transfer of nuclear spin polarization from parahydrogen to other nuclei for signal enhancements, particularly in proton NMR, and has been applied in studies of enzymatic reactions and cell signaling. This review provides an overview of in-cell NMR, in vivo MRS, and hyperpolarization techniques, highlighting their applications in metabolic studies and discussing challenges and future perspectives.


Assuntos
Imageamento por Ressonância Magnética , Metabolômica , Humanos , Espectroscopia de Ressonância Magnética/métodos , Redes e Vias Metabólicas , Transdução de Sinais
11.
Phys Chem Chem Phys ; 26(2): 788-807, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38088777

RESUMO

Ultrafast excited-state dynamics of the simplest nitrostilbenes, namely trans-4-nitrostilbene (t-NSB), was studied in solvents of various polarities with ultrafast broadband time-resolved fluorescence and transient absorption spectroscopies, and by quantum-chemical computations. The results revealed that the initially excited S1(ππ*) state deactivation dynamics is strongly influenced by the solvent polarity. Specifically, the t-NSB S1-state lifetime decreases by three orders of magnitude from ∼60 ps in high-polarity solvents to ∼60 fs in nonpolar solvents. The strong solvent-polarity dependence arises from the differences in dipole moments among the S1 and relevant states, including the major intersystem crossing (ISC) receiver triplet states, and therefore, the solvent polarity can modulate their relative energies and ISC rates. In nonpolar solvents, the sub-100 fs lifetime is due to a combination of efficient ISC and internal conversion. In medium-polarity solvents, the S1-state population decays via a competing ISC relaxation mechanism in a biphasic manner, and the ISC rates are found to obey the inverse energy gap law of the strong coupling case. In high-polarity solvents, the S1 state is stabilized to a much lower energy such that ISC becomes energetically infeasible, and the S1 state decays via barrier crossing along the torsion angle of the central ethylenic bond to the nonfluorescent perpendicular configuration. Regardless of the initial S1-state deactivation pathways in various solvents, the excited-state population is ultimately trapped in the metastable T1-state perpendicular configuration, at which a slower ISC occurs to bring the system to the ground state and bifurcate into either trans or cis form of NSB.

12.
Bioorg Chem ; 147: 107315, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38604017

RESUMO

Seven new meroterpenoids, paraphaeones A-G (1-7), and two new polyketides, paraphaeones H-I (8-9), along with eight known compounds (10-17), were isolated from the endophytic fungus Paraphaeosphaeria sp. C-XB-J-1. The structures of 1-9 were identified through the analysis of 1H, 13C, and 2D NMR spectra, assisted by HR-ESI-MS data. Compounds 1 and 7 exhibited a dose-dependent decrease in lactate dehydrogenase levels, with IC50 values of 1.78 µM and 1.54 µM, respectively. Moreover, they inhibited the secretion of IL-1ß and CASP-1, resulting in a reduction in the activity levels of NLRP3 inflammasomes. Fluorescence microscopy results indicated that compound 7 concentration-dependently attenuated cell pyroptosis. Additionally, compounds 4 and 7 showed potential inhibitory effects on the severe acute respiratory syndrome coronavirus-2 main protease (SARS-CoV-2 Mpro), with IC50 values of 10.8 ± 0.9 µM and 12.9 ± 0.7 µM, respectively.


Assuntos
Ascomicetos , Proteases 3C de Coronavírus , Policetídeos , SARS-CoV-2 , Terpenos , Policetídeos/química , Policetídeos/farmacologia , Policetídeos/isolamento & purificação , Ascomicetos/química , Humanos , Terpenos/química , Terpenos/farmacologia , Terpenos/isolamento & purificação , SARS-CoV-2/efeitos dos fármacos , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/metabolismo , Proteases 3C de Coronavírus/química , Estrutura Molecular , Antivirais/farmacologia , Antivirais/química , Antivirais/isolamento & purificação , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Relação Dose-Resposta a Droga , Relação Estrutura-Atividade , Tratamento Farmacológico da COVID-19 , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/isolamento & purificação
13.
Anesth Analg ; 138(5): 1107-1119, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37390022

RESUMO

BACKGROUND: Paclitaxel (PTX), which is a first-line chemotherapy drug used to treat various types of cancers, exhibits peripheral neuropathy as a common side effect that is difficult to treat. Protein arginine methyltransferase 5 (PRMT 5) is a key regulator of the chemotherapy response, as chemotherapy drugs induce PRMT5 expression. However, little is known about the PRMT5-mediated epigenetic mechanisms involved in PTX-induced neuropathic allodynia. METHODS: Sprague-Dawley rats were intraperitoneally given PTX to induce neuropathic pain. Biochemical analyses were conducted to measure the protein expression levels in the dorsal root ganglion (DRG) of the animals. The von Frey test and hot plate test were used to evaluate nociceptive behaviors. RESULTS: PTX increased the PRMT5 (mean difference [MD]: 0.68, 95% confidence interval [CI], 0.88-0.48; P < .001 for vehicle)-mediated deposition of histone H3R2 dimethyl symmetric (H3R2me2s) at the transient receptor potential vanilloid 1 ( Trpv1 ) promoter in the DRG. PRMT5-induced H3R2me2s recruited WD repeat domain 5 (WDR5) to increase trimethylation of lysine 4 on histone H3 (H3K4me3) at Trpv1 promoters, thus resulting in TRPV1 transcriptional activation (MD: 0.65, 95% CI, 0.82-0.49; P < .001 for vehicle) in DRG in PTX-induced neuropathic pain. Moreover, PTX increased the activity of NADPH oxidase 4 (NOX4) (MD: 0.66, 95% CI, 0.81-0.51; P < .001 for vehicle), PRMT5-induced H3R2me2s, and WDR5-mediated H3K4me3 in the DRG in PTX-induced neuropathic pain. Pharmacological antagonism and the selective knockdown of PRMT5 in DRG neurons completely blocked PRMT5-mediated H3R2me2s, WDR5-mediated H3K4me3, or TRPV1 expression and neuropathic pain development after PTX injection. Remarkably, NOX4 inhibition not only attenuated allodynia behavior and reversed the above-mentioned signaling but also reversed NOX4 upregulation via PTX. CONCLUSIONS: Thus, the NOX4/PRMT5-associated epigenetic mechanism in DRG has a dominant function in the transcriptional activation of TRPV1 in PTX-induced neuropathic pain.


Assuntos
Antineoplásicos , Neuralgia , Ratos , Animais , Paclitaxel/toxicidade , Paclitaxel/metabolismo , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Proteína-Arginina N-Metiltransferases/farmacologia , Ratos Sprague-Dawley , Hiperalgesia/induzido quimicamente , Hiperalgesia/genética , Hiperalgesia/metabolismo , Gânglios Espinais , Canais de Cátion TRPV/genética , Antineoplásicos/efeitos adversos , Neuralgia/induzido quimicamente , Neuralgia/genética , Neuralgia/metabolismo , Epigênese Genética
14.
Antonie Van Leeuwenhoek ; 117(1): 74, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38691182

RESUMO

A Gram-stain positive, aerobic, alkalitolerant and halotolerant bacterium, designated HH7-29 T, was isolated from the confluence of the Fenhe River and the Yellow River in Shanxi Province, PR China. Growth occurred at pH 6.0-12.0 (optimum, pH 8.0-8.5) and 15-40℃ (optimum, 32℃) with 0.5-24% NaCl (optimum, 2-9%). The predominant fatty acids (> 10.0%) were iso-C15:0 and anteiso-C15:0. The major menaquinones were MK-7 and MK-8. The polar lipids were phosphatidylglycerol, diphosphatidylglycerol and two unidentified phospholipids. Phylogenetic analyses based on the 16S rRNA gene sequence revealed that strain HH7-29 T was a member of the genus Jeotgalibacillus, exhibiting high sequence similarity to the 16S rRNA gene sequences of Jeotgalibacillus alkaliphilus JC303T (98.4%), Jeotgalibacillus salarius ASL-1 T (98.1%) and Jeotgalibacillus alimentarius YKJ-13 T (98.1%). The genomic DNA G + C content was 43.0%. Gene annotation showed that strain HH7-29 T had lower protein isoelectric points (pIs) and possessed genes related to ion transport and organic osmoprotectant uptake, implying its potential tolerance to salt and alkali. The average nucleotide identity, digital DNA-DNA hybridization values, amino acid identity values, and percentage of conserved proteins values between strain HH7-29 T and its related species were 71.1-83.8%, 19.5-27.4%, 66.5-88.4% and 59.8-76.6%, respectively. Based on the analyses of phenotypic, chemotaxonomic, phylogenetic and genomic features, strain HH7-29 T represents a novel species of the genus Jeotgalibacillus, for which the name Jeotgalibacillus haloalkalitolerans sp. nov. is proposed. The type strain is HH7-29 T (= KCTC 43417 T = MCCC 1K07541T).


Assuntos
Composição de Bases , DNA Bacteriano , Ácidos Graxos , Filogenia , RNA Ribossômico 16S , Rios , RNA Ribossômico 16S/genética , China , Rios/microbiologia , DNA Bacteriano/genética , Ácidos Graxos/análise , Cloreto de Sódio/metabolismo , Técnicas de Tipagem Bacteriana , Fosfolipídeos/análise , Análise de Sequência de DNA , Hibridização de Ácido Nucleico
15.
Antonie Van Leeuwenhoek ; 117(1): 28, 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38280034

RESUMO

A novel Gram-stain-negative, strictly aerobic and bioflocculant-producing bacterium, designated as ASW11-36T, was isolated from an intertidal sand collected from coastal areas of Qingdao, PR China. Growth occurred at 15-40 °C (optimum, 30 °C), pH 7.0-9.0 (optimum, pH 7.5) and with 1.5-7.0% (w/v) NaCl (optimum, 2.5-3.0%). In the whole-cell fatty acid pattern prevailed C16:0 and summed feature 3 (C16:1 ω7c and/or C16:1 ω6c). The major isoprenoid quinone was determined to be Q-8 and the major polar lipids were phosphatidylethanolamine (PE) and phosphatidylglycerol (PG), one unidentified aminolipid (AL), one unidentified glycolipid (GL), and two lipids (L1, L2). Based on the phylogenetic analyses of 16S rRNA gene sequences and 618 single-copy orthologous clusters, strain ASW11-36T could represent a novel member of the genus Alteromonas and was closely related to Alteromonas flava P0211T (98.4%) and Alteromonas facilis P0213T (98.3%). The pairwise average nucleotide identity and digital DNA-DNA hybridization values of the ASW11-36T genome assembly against the closely related species genomes were 71.8% and 21.7%, respectively, that clearly lower than the proposed thresholds for species. Based on phenotypic, phylogenetic, and chemotaxonomic analyses, strain ASW11-36T is considered to represent a novel species of the genus Alteromonas, for which the name Alteromonas arenosi sp. nov. is proposed. The type strain is ASW11-36T (= KCTC 82496T = MCCC 1K05585T). In addition, the strain yielded 65% of flocculating efficiency in kaolin suspension with CaCl2 addition. The draft genome of ASW11-36T shared abundant putative CAZy family related genes, especially involved in the biosynthesis of exopolysaccharides, implying its potential environmental and biological applications.


Assuntos
Alteromonas , Areia , Filogenia , RNA Ribossômico 16S/genética , Técnicas de Tipagem Bacteriana , Ácidos Graxos , Ubiquinona , DNA , Análise de Sequência de DNA , DNA Bacteriano/genética , Fosfolipídeos
16.
BMC Med Imaging ; 24(1): 160, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926814

RESUMO

PURPOSE: This study aimed to investigate the feasibility of using computed tomography (CT) attenuation values to differentiate hypodense brain lesions, specifically acute ischemic stroke (AIS) from asymmetric leukoaraiosis (LA) and old cerebral infarction (OCI). MATERIALS AND METHODS: This retrospective study included patients with indeterminate hypodense lesions identified via brain CT scans conducted between June 2019 and June 2021. All lesions were confirmed through head MRI/diffusion-weighted imaging within 48 h after CT. CT attenuation values of hypodense lesions and symmetrical control regions were measured. Additionally, CT attenuation value difference (ΔHU) and ratio (RatioHU) were calculated. One-way analysis of variance (ANOVA) was used to compare age and CT parameters (CT attenuation values, ΔHU and RatioHU) across the groups. Finally, receiver operating characteristic (ROC) analysis was performed to determine the cutoff values for distinguishing hypodense lesions. RESULTS: A total of 167 lesions from 146 patients were examined. The CT attenuation values for AIS(n = 39), LA(n = 53), and OCI(n = 75) were 18.90 ± 6.40 HU, 17.53 ± 4.67 HU, and 11.90 ± 5.92 HU, respectively. The time interval between symptom onset and CT scans for AIS group was 32.21 ± 26.85 h. ANOVA revealed significant differences among the CT parameters of the hypodense lesion groups (all P < 0.001). The AUC of CT values, ΔHU, and RatioHU for distinguishing AIS from OCI were 0.802, 0.896 and 0.878, respectively (all P < 0.001). Meanwhile, the AUC for distinguishing OCI from LA was 0.789, 0.883, and 0.857, respectively (all P < 0.001). Nevertheless, none of the parameters could distinguish AIS from LA. CONCLUSION: CT attenuation parameters can be utilized to differentiate between AIS and OCI or OCI and LA in indeterminate hypodense lesions on CT images. However, distinguishing AIS from LA remains challenging.


Assuntos
Infarto Cerebral , Estudos de Viabilidade , AVC Isquêmico , Leucoaraiose , Tomografia Computadorizada por Raios X , Humanos , Leucoaraiose/diagnóstico por imagem , Masculino , Feminino , Idoso , Estudos Retrospectivos , AVC Isquêmico/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Pessoa de Meia-Idade , Diagnóstico Diferencial , Infarto Cerebral/diagnóstico por imagem , Curva ROC , Idoso de 80 Anos ou mais
17.
BMC Pediatr ; 24(1): 28, 2024 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-38191334

RESUMO

BACKGROUND: Pediatric myelodysplastic syndromes (MDS) are rare disorders with an unrevealed pathogenesis. Our aim is to explore the role of genetic factors in the pathogenesis of MDS in children with different outcomes and to discover the correlation between genetic features and clinical outcomes as well as disease characteristics. METHODS: We conducted an analysis of archived genetic data from 26 patients diagnosed with pediatric MDS at our institution between 2015 and 2021, examining the association between different genetic characteristics and clinical manifestations as well as prognosis. Additionally, We presented three cases with distinct genetic background and outcomes as examples to elaborate the role of genetic factors in pediatric MDS with different prognoses. RESULTS: Genetic variations were detected in 13 out of the 26 patients, including 8 patients with co-occurrence of somatic and germline mutations (CSGMs) and 5 patients with somatic mutations alone. Our analysis revealed that advanced MDS (4/8, 50% vs. 1/5, 20% and 4/11, 36.4%), PD (3/8, 37.5% vs. 1/5, 20% and 1/11 9.1%), and TD (6/8, 75% vs. 2/5, 40% and 2/11, 18.2%) were more common in patients with CSGMs than those with somatic mutations alone or without any mutations. We also found out in our study that 8 patients with CSGMs had evidently different clinical outcomes, and we presented 3 of them as examples for elaboration. Case 1 with germline and somatic mutations of unknown significance had a relatively slow disease course and a good prognosis. Case 2 with compound heterozygous germline SBDS variants and somatic mutations like del20q had a stable disease course and a reversed outcome. Case 3 with a germline GATA2 variant and somatic mutations including - 7 had a rapidly progressive disease course and a worst prognosis. CONCLUSION: Our findings indicate that genetic background of pediatric MDS is closely linked with disease characteristics as well as outcomes and that CSGMs may lead to disease progression. It should be emphasized that the interaction between certain germline variants and somatic mutations, such as SBDS and del20q, may result in hematopoietic stem cell adaptation (improved hematopoiesis) and reversed clinical outcomes, which can facilitate the development of targeted therapy.


Assuntos
Instalações de Saúde , Síndromes Mielodisplásicas , Humanos , Criança , Progressão da Doença , Mutação , Síndromes Mielodisplásicas/diagnóstico , Síndromes Mielodisplásicas/genética , Doenças Raras
18.
Neurodegener Dis ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38934198

RESUMO

INTRODUCTION: Spinocerebellar ataxia type 36 (SCA36) is caused by large GGCCTG repeat expansion in the NOP56 gene. The genetic diagnosis based on Southern blot is expensive and time-consuming. This study aimed to evaluate the reliability and effectiveness of whole exome sequencing (WES) for routine genetic diagnosis of suspected SCA36 patients. METHODS: Pathogenic repeat expansions for SCAs including SCA36 were first analyzed based on WES data using ExpansionHunter in five probands from SCA families, then the results were confirmed by triplet repeat primed polymerase chain reaction (TP-PCR) and Southern blot. RESULTS: GGCCTG repeat expansion in NOP56 was indicated in all five probands by WES, then it was found in 11 SCA patients and three asymptomatic individuals by TP-PCR. The sizes of GGCCTG repeat expansions were confirmed to be 1390-1556 by Southern blot. The mean age at onset of the patients was 51.0 ± 9.3 (ranging from 41 to 71), and they presented slowly progressive cerebellar ataxia, atrophy and fasciculation in tongue or limb muscles. CONCLUSION: The patients were clinically and genetically diagnosed as SCA36. This study proposed that WES could be a rapid, reliable, and cost-effective routine test for the preliminarily detection of SCA36 and other ataxia diseases.

19.
Environ Toxicol ; 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38581214

RESUMO

BACKGROUND: Protein tyrosine phosphatase non-receptor type 7 (PTPN7) is a signaling molecule that regulates a multitude of cellular processes, spanning cell proliferation, cellular differentiation, the mitotic cycle, and oncogenic metamorphosis. However, the characteristic of PTPN7 in the glioma microenvironment has yet to be elucidated. METHODS: The prognostic value, genomic features, immune characteristics, chemotherapy prediction, and immunotherapy prediction of PTPN7 were systematically explored at the bulk sequencing level. The cell evolution trajectory, cell communication pattern, and cell metabolic activity related to PTPN7 were systematically explored at the single-cell sequencing level. HMC3 and M0 cells were cocultured with U251 and T98G cells, and flow cytometry was carried out to investigate the polarization of HMC3 and M0. Transwell assay and CCK-8 assay were performed to explore the migration and proliferation activity of U251 and T98G. RESULTS: The expression level of PTPN7 is significantly elevated in glioma and indicates malignant features. PTPN7 expression predicts worse prognosis of glioma patients. PTPN7 is associated with genome alteration and immune infiltration. Besides, PTPN7 plays a crucial role in modulating metabolic and immunogenic processes, particularly by influencing the activity of microglia and macrophages through multiple signaling pathways involved in cellular communication. Specifically, PTPN7 actively mediates inflammation-resolving-polarization of macrophages and microglia and protects glioma from immune attack. PTPN7 could also predict the response of immunotherapy. CONCLUSIONS: PTPN7 is critically involved in inflammation-resolving-polarization mediated by macrophage and microglia and promotes the immune escape of glioma cells.

20.
Sensors (Basel) ; 24(2)2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38257709

RESUMO

In recent years, there has been significant growth in the ubiquity and popularity of three-dimensional (3D) point clouds, with an increasing focus on the classification of 3D point clouds. To extract richer features from point clouds, many researchers have turned their attention to various point set regions and channels within irregular point clouds. However, this approach has limited capability in attending to crucial regions of interest in 3D point clouds and may overlook valuable information from neighboring features during feature aggregation. Therefore, this paper proposes a novel 3D point cloud classification method based on global attention and adaptive graph convolution (Att-AdaptNet). The method consists of two main branches: the first branch computes attention masks for each point, while the second branch employs adaptive graph convolution to extract global features from the point set. It dynamically learns features based on point interactions, generating adaptive kernels to effectively and precisely capture diverse relationships among points from different semantic parts. Experimental results demonstrate that the proposed model achieves 93.8% in overall accuracy and 90.8% in average accuracy on the ModeNet40 dataset.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa