Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Small ; 20(1): e2302440, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37668280

RESUMO

The perception of temperature and pressure of skin plays a vital role in joint movement, hand grasp, emotional expression, and self-protection of human. Among many biomimetic materials, ionic gels are uniquely suited to simulate the function of skin due to its ionic transport mechanism. However, both the temperature and pressure sensing are heavily dependent on the changes in ionic conductivity, making it impossible to decouple the temperature and pressure signals. Here, a pressure-insensitive and temperature-modulated ion channel is designed by synergistic strategies for gel skeleton's compact packing and ultra-thin structure, mimicking the function of the temperature ion channel in human skin. This ion-confined gel can completely suppress the pressure response of the temperature sensing layer. Furthermore, a temperature-pressure decoupled ionic sensor is fabricated and it is demonstrated that the ionic sensor can sense complex signals of temperature and pressure. This novel and effective approach has great potential to overcome one of the current barriers in developing ionic skin and extending its applications.


Assuntos
Biomimética , Percepção do Tato , Humanos , Temperatura , Tato/fisiologia , Canais Iônicos
2.
Small ; : e2400278, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38552247

RESUMO

Developing a highly efficient electrochromic energy storage device with sufficient color fluctuation and significant electrochemical performance is highly desirable for practical energy-saving applications. Here, to achieve a highly stable material with a large electrochemical storage capacity, a W18O49 NW/Ti3C2Tx composite has been fabricated and deposited on a pre-assembled Ag and W18O49 NW conductive network by Langmuir-Blodgett technique. The resulting hybrid electrode composed of 15 layers of W18O49 NW/Ti3C2Tx composite exhibits an areal capacitance of 125 mF cm-2, with a fast and reversible switching response. An optical modulation of 98.2% can be maintained at a current density of 5 mA cm-2. Using this electrode, a bifunctional symmetric electrochromic supercapacitor device having an energy density of 10.26 µWh cm-2 and a power density of 0.605 mW cm-2 is fabricated, with high capacity retention and full columbic efficiency over 4000 charge-discharge cycles. Meanwhile, the device displays remarkable electrochromic characteristics, including fast switching time (5 s for coloring and 7 s for bleaching), and a significant coloration efficiency of 116 cm2 C-1 with good optical modulation stability. In addition, the device exhibits significant mechanical flexibility and fast switching while being stable over 100 bending cycles, which is promising for real-world applications.

3.
J Neuroeng Rehabil ; 21(1): 69, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38725065

RESUMO

BACKGROUND: In the practical application of sarcopenia screening, there is a need for faster, time-saving, and community-friendly detection methods. The primary purpose of this study was to perform sarcopenia screening in community-dwelling older adults and investigate whether surface electromyogram (sEMG) from hand grip could potentially be used to detect sarcopenia using machine learning (ML) methods with reasonable features extracted from sEMG signals. The secondary aim was to provide the interpretability of the obtained ML models using a novel feature importance estimation method. METHODS: A total of 158 community-dwelling older residents (≥ 60 years old) were recruited. After screening through the diagnostic criteria of the Asian Working Group for Sarcopenia in 2019 (AWGS 2019) and data quality check, participants were assigned to the healthy group (n = 45) and the sarcopenic group (n = 48). sEMG signals from six forearm muscles were recorded during the hand grip task at 20% maximal voluntary contraction (MVC) and 50% MVC. After filtering recorded signals, nine representative features were extracted, including six time-domain features plus three time-frequency domain features. Then, a voting classifier ensembled by a support vector machine (SVM), a random forest (RF), and a gradient boosting machine (GBM) was implemented to classify healthy versus sarcopenic participants. Finally, the SHapley Additive exPlanations (SHAP) method was utilized to investigate feature importance during classification. RESULTS: Seven out of the nine features exhibited statistically significant differences between healthy and sarcopenic participants in both 20% and 50% MVC tests. Using these features, the voting classifier achieved 80% sensitivity and 73% accuracy through a five-fold cross-validation. Such performance was better than each of the SVM, RF, and GBM models alone. Lastly, SHAP results revealed that the wavelength (WL) and the kurtosis of continuous wavelet transform coefficients (CWT_kurtosis) had the highest feature impact scores. CONCLUSION: This study proposed a method for community-based sarcopenia screening using sEMG signals of forearm muscles. Using a voting classifier with nine representative features, the accuracy exceeds 70% and the sensitivity exceeds 75%, indicating moderate classification performance. Interpretable results obtained from the SHAP model suggest that motor unit (MU) activation mode may be a key factor affecting sarcopenia.


Assuntos
Eletromiografia , Força da Mão , Vida Independente , Aprendizado de Máquina , Sarcopenia , Humanos , Sarcopenia/diagnóstico , Sarcopenia/fisiopatologia , Eletromiografia/métodos , Idoso , Masculino , Feminino , Força da Mão/fisiologia , China , Pessoa de Meia-Idade , Músculo Esquelético/fisiopatologia , Máquina de Vetores de Suporte , Idoso de 80 Anos ou mais , População do Leste Asiático
4.
Anal Bioanal Chem ; 414(20): 6017-6027, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35788870

RESUMO

Food quality control is essential in industry and daily life. In this work, we developed a novel colorimetric sensor array composed of several pH-sensitive dyes for monitoring meat freshness. A color change in the sensor array was seen after exposure to volatile organic compounds (VOCs), and the images were captured for precise quantification of the VOCs. In conjunction with pattern recognition, meat freshness at different storage periods was readily discerned, revealing that the as-fabricated colorimetric sensor array possessed excellent discrimination ability. The linear range for quantitative analysis of volatiles related to meat spoilage was from 5 ppm to 100 ppm, with a limit of detection at the ppb level (S/N = 3). Furthermore, the testing results obtained by the sensor in assessing meat freshness were validated by a standard method for measuring the total volatile basic nitrogen (TVB-N). The sensing signals showed good agreement with the results obtained in TVB-N when measuring real food samples. The sensor also displayed good reproducibility (RSD < 5%) and long-term stability. The sensor was successfully used for on-site and real-time determination of volatiles emitted from rotting meat, demonstrating its potential application in monitoring the quality and safety of meat products.


Assuntos
Colorimetria , Compostos Orgânicos Voláteis , Qualidade dos Alimentos , Carne/análise , Nitrogênio/análise , Reprodutibilidade dos Testes , Compostos Orgânicos Voláteis/análise
5.
Anal Chem ; 92(16): 11277-11287, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32686403

RESUMO

Two-dimensional (2D) transition-metal/metal chalcogenides including MoS2, MoSe2, WS2, SnS2, etc. have shown considerable potential for the fabrication of gas sensors for NO2 detection. However, these sensors usually suffer from sluggish and incomplete recovery at room temperature, and their sensitivities are limited by presorbed O2. In this work, a novel optoelectronic gas sensor based on direct-bandgap InSe nanosheets was demonstrated. Because of the excellent photoelectric and sensing properties in few-layer InSe, detection of NO2 at room temperature was realized. Ultrahigh and reversible responses were obtained under ultraviolet (UV) light illumination, and the limit of detection (0.98 ppb) was ∼40 times lower than that observed without UV light. Furthermore, the effects of O2 and H2O molecules on sensor performance were fully studied through experiments and density functional theory. Some new mechanisms of NO2 detection in high relative humidity conditions under UV illumination were proposed, including regulation of proton transfer and induction of H2O2 reduction. In all, this work not only broadens the application field of 2D InSe, but also demonstrates the potential prospect of detecting ppb-level NO2 in complex circumstances such as human breath by using 2D material-based sensors with light activation.

6.
Macromol Rapid Commun ; : e1800246, 2018 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-29972617

RESUMO

Ionic gels represent a novel class of stretchable materials where ionic conducting liquid is immobilized in a polymer matrix. This review focuses on the design of ionic gel materials and device fabrication of ionic-gel-based stretchable electronics. In particular, recent progress in ionic-gel-based electronic skin (pressure/strain sensors, electric double-layer transistors, etc.), flexible displays, energy storage devices, and soft actuators are summarized, followed by a discussion of challenges in developing ionic-gel-based electronics and suggestions for future research directions that might overcome those challenges.

7.
Analyst ; 142(7): 1091-1098, 2017 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-28272604

RESUMO

A highly sensitive electrochemical sensor based on a carbon paste electrode (CPE) modified with molecularly imprinted polymeric microspheres (MIPMSs) was developed for the determination of bisphenol A (BPA). For the first time BPA-imprinted MIPMSs were prepared via distillation precipitation polymerization, and then the polymeric microspheres were involved in producing the MIPMS-modified CPE (MIPMS/CPE). The polymers obtained were observed via a scanning electron microscope and its dynamic and static adsorption performances were investigated. Cyclic voltammetry and electrochemical impedance spectroscopy were performed to study the preparation process and electrochemical behavior of the modified carbon paste electrodes with [Fe(CN)6]3-/4- ions acting as electrical indicators. Compared with the bulk MIP packed sensor, the MIPMS/CPE exhibits a higher sensing response and better reproducibility. The detection linear range for BPA is 1 × 10-11-1 × 10-7 M with a detection limit of 2.8 × 10-12 M (S/N = 3) under the optimal experimental conditions. Moreover, the MIPMS/CPE exhibited good selectivity and stability. The developed sensor can determine BPA in real samples including soil, milk and water rapidly and accurately after simple sample pretreatment.

8.
Mikrochim Acta ; 185(1): 78, 2017 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-29594562

RESUMO

The work describes a hybrid electrochemical sensor for highly sensitive detection of the anesthetic lidocaine (LID). Porous carbon (PC) was synthesized from an isoreticular metal-organic framework-8 (IRMOF-8) and drop cast onto a glassy carbon electrode (GCE). A layer of a molecularly imprinted polymer (MIP) layer was then fabricated in situ on the modified GCE by electro-polymerization, with LID acting as the template and resorcinol as the functional monomer. Hexacyanoferrate is used as an electrochemical probe. The electrical signal (typically acquired at 0.335 V vs. SCE) increases linearly in the 0.2 pM to 8 nM LID concentration range, with a remarkable 67 fM detection limit (at an S/N ratio of 3). The sensor is stable and selective. Eventually, rapid and accurate detection of LID in spiked real samples was successfully realized. Graphical abstract ᅟ.

9.
J Nanosci Nanotechnol ; 15(8): 5918-23, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26369172

RESUMO

In this paper, we developed a top-down method to fabricate complex three dimensional silicon structure, which was inspired by the hierarchical micro/nanostructure of the Morpho butterfly scales. The fabrication procedure includes photolithography, metal masking, and both dry and wet etching techniques. First, microscale photoresist grating pattern was formed on the silicon (111) wafer. Trenches with controllable rippled structures on the sidewalls were etched by inductively coupled plasma reactive ion etching Bosch process. Then, Cr film was angled deposited on the bottom of the ripples by electron beam evaporation, followed by anisotropic wet etching of the silicon. The simple fabrication method results in large scale hierarchical structure on a silicon wafer. The fabricated Si structure has multiple layers with uniform thickness of hundreds nanometers. We conducted both light reflection and heat transfer experiments on this structure. They exhibited excellent antireflection performance for polarized ultraviolet, visible and near infrared wavelengths. And the heat flux of the structure was significantly enhanced. As such, we believe that these bio-inspired hierarchical silicon structure will have promising applications in photovoltaics, sensor technology and photonic crystal devices.


Assuntos
Materiais Biomiméticos/síntese química , Borboletas/ultraestrutura , Nanopartículas/ultraestrutura , Impressão Tridimensional , Silício/química , Asas de Animais/ultraestrutura , Animais , Borboletas/química , Luz , Teste de Materiais , Nanopartículas/química , Tamanho da Partícula , Espalhamento de Radiação , Propriedades de Superfície , Condutividade Térmica , Molhabilidade , Asas de Animais/química
10.
J Colloid Interface Sci ; 668: 142-153, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38669992

RESUMO

Based on real-time detection of plantar pressure, gait recognition could provide important health information for rehabilitation administration, fatigue prevention, and sports training assessment. So far, such researches are extremely limited due to lacking of reliable, stable and comfortable plantar pressure sensors. Herein, a strategy for preparing high compression strength and resilience conductive iongels has been proposed by implanting physically entangled polymer chains with covalently cross-linked networks. The resulting iongels have excellent mechanical properties including nice compliance (young's modulus < 300 kPa), high compression strength (>10 MPa at a strain of 90 %), and good resilience (self-recovery within seconds). And capacitive pressure sensor composed by them possesses excellent sensitivity, good linear response even under very small stress (∼kPa), and long-term durability (cycles > 100,000) under high-stress conditions (133 kPa). Then, capacitive pressure sensor arrays have been prepared for high-precision detection of plantar pressure spatial distribution, which also exhibit excellent sensing performances and long-term stability. Further, an extremely sensitive and fast response plantar pressure monitoring system has been designed for monitoring plantar pressure of foot at different postures including upright, forward and backward. The system achieves real-time tracking and monitoring of changes of plantar pressure during different static and dynamic posture processes. And the characteristics of plantar pressure information can be digitally and photography displayed. Finally, we propose an intelligent framework for real-time detection of plantar pressure by combining electronic insoles with data analysis system, which presents excellent applications in sport trainings and safety precautions.


Assuntos
Pressão , Humanos , Condutividade Elétrica , Pé/fisiologia , Monitorização Fisiológica/instrumentação , Marcha/fisiologia , Propriedades de Superfície , Dispositivos Eletrônicos Vestíveis
11.
ACS Sens ; 9(3): 1349-1358, 2024 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-38437790

RESUMO

At present, traditional analytical methods suffer from issues such as complex operation, expensive equipment, and a lengthy testing time. Electrochemical sensors have shown great advantages and application potential as an alternative solution. In this study, we proposed a novel semiautomated electrochemical sensor array (SAESA) platform. The sensor array was fabricated using screen-printed technology with a tubular design where all electrodes were printed on the inner wall. The integration of the tubular sensor array with a pipet allows for a semiautomated process including sampling and rinsing, which simplifies operation and reduces overall time. Each working electrode in the tubular sensor array underwent distinct decoration to get specific sensing responses toward the target analytes in a mixture environment (e.g., blood samples). To demonstrate the applicability of the developed sensing platform for simultaneous multianalyte detection, we chose antibiotic treatment for inflammatory infection as a model scenario and continuously measured three biomarkers, namely, tigecycline (TGC), procalcitonin (PCT), and alanine aminotransferase (ALT). The detection limits were 0.3 µM, 0.3 ng/L, and 2.76 U/L, respectively. The developed semiautomated electrochemical sensor array exhibits characteristics such as rapid and simple operation, portability, good selectivity, and excellent stability.


Assuntos
Antibacterianos , Biomarcadores , Eletrodos
12.
Nanoscale ; 16(25): 12142-12148, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38832816

RESUMO

The application of resistive random-access memory (RRAM) in storage and neuromorphic computing has attracted widespread attention. Benefitting from the quantum effect, transition metal dichalcogenides (TMD) quantum dots (QDs) exhibit distinctive optical and electronic properties, which make them promising candidates for emerging RRAM. Here, we show a high-performance forming-free flexible RRAM based on high-quality tin disulfide (SnS2) QDs prepared by a facile liquid phase method. The RRAM device demonstrates high flexibility with a large on/off ratio of ∼106 and a long retention time of over 3 × 104 s. The excellent switching behavior of the memristor is elucidated by a charge trapping/de-trapping mechanism where the SnS2 QDs act as charge trapping centers. This study is of significance for the understanding and development of TMD QD-based flexible memristors.

13.
Microsyst Nanoeng ; 10: 19, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38283382

RESUMO

In this work, we propose porous fluororubber/thermoplastic urethane nanocomposites (PFTNs) and explore their intrinsic piezoresistive sensitivity to pressure. Our experiments reveal that the intrinsic sensitivity of the PFTN-based sensor to pressure up to 10 kPa increases up to 900% compared to the porous thermoplastic urethane nanocomposite (PTN) counterpart and up to 275% compared to the porous fluororubber nanocomposite (PFN) counterpart. For pressures exceeding 10 kPa, the resistance-pressure relationship of PFTN follows a logarithmic function, and the sensitivity is 221% and 125% higher than that of PTN and PFN, respectively. With the excellent intrinsic sensitivity of the thick PFTN film, a single sensing unit with integrated electrode design can imitate human skin for touch detection, pressure perception and traction sensation. The sensing range of our multimodal tactile sensor reaches ~150 Pa, and it exhibits a linear fit over 97% for both normal pressure and shear force. We also demonstrate that an electronic skin, made of an array of sensing units, is capable of accurately recognizing complex tactile interactions including pinch, spread, and tweak motions.

14.
Adv Mater ; 36(9): e2305032, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37724482

RESUMO

The perception of object's deformability in unstructured interactions relies on both kinesthetic and cutaneous cues to adapt the uncertainties of an object. However, the existing tactile sensors cannot provide adequate cutaneous cues to self-adaptively estimate the material softness, especially in non-standard contact scenarios where the interacting object deviates from the assumption of an elastic half-infinite body. This paper proposes an innovative design of a tactile sensor that integrates the capabilities of two slow-adapting mechanoreceptors within a soft medium, allowing self-decoupled sensing of local pressure and strain at specific locations within the contact interface. By leveraging these localized cutaneous cues, the sensor can accurately and self-adaptively measure the material softness of an object, accommodating variations in thicknesses and applied forces. Furthermore, when combined with a kinesthetic cue from the robot, the sensor can enhance tactile expression by the synergy of two relevant deformation attributes, including material softness and compliance. It is demonstrated that the biomimetic fusion of tactile information can fully comprehend the deformability of an object, hence facilitating robotic decision-making and dexterous manipulation.


Assuntos
Biomimética , Robótica , Mecanorreceptores , Percepção
15.
Adv Mater ; 36(24): e2313518, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38502121

RESUMO

A wearable Braille-to-speech translation system is of great importance for providing auditory feedback in assisting blind people and people with speech impairment. However, previous reported Braille-to-speech translation systems still need to be improved in terms of comfortability or integration. Here, a Braille-to-speech translation system that uses dual-functional electrostatic transducers which are made of fabric-based materials and can be integrated into textiles is reported. Based on electrostatic induction, the electrostatic transducer can either serve as a tactile sensor or a loudspeaker with the same design. The proposed electrostatic transducers have excellent output performances, mechanical robustness, and working stability. By combining the devices with machine learning algorithms, it is possible to translate the Braille alphabet and 40 commonly used words (extensible) into speech with an accuracy of 99.09% and 97.08%, respectively. This work demonstrates a new approach for further developments of advanced assistive technology toward improving the lives of disabled people.


Assuntos
Eletricidade Estática , Têxteis , Humanos , Dispositivos Eletrônicos Vestíveis , Fala , Desenho de Equipamento , Auxiliares Sensoriais , Aprendizado de Máquina
16.
Nanomaterials (Basel) ; 13(7)2023 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-37049275

RESUMO

Conformable, sensitive, long-lasting, external power supplies-free multifunctional electronics are highly desired for personal healthcare monitoring and artificial intelligence. Herein, we report a series of stretchable, skin-like, self-powered tactile and motion sensors based on single-electrode mode triboelectric nanogenerators. The triboelectric sensors were composed of ultraelastic polyacrylamide (PAAm)/(polyvinyl pyrrolidone) PVP/(calcium chloride) CaCl2 conductive hydrogels and surface-modified silicon rubber thin films. The significant enhancement of electrospun polyvinylidene fluoride (PVDF) nanofiber-modified hierarchically wrinkled micropyramidal architectures for the friction layer was studied. The mechanism of the enhanced output performance of the electrospun PVDF nanofibers and the single-side/double-side wrinkled micropyramidal architectures-based sensors has been discussed in detail. The as-prepared devices exhibited excellent sensitivity of a maximum of 20.1 V/N (or 8.03 V/kPa) as tactile sensors to recognize a wide range of forces from 0.1 N to 30 N at low frequencies. In addition, multiple human motion monitoring was demonstrated, such as knee, finger, wrist, and neck movement and voice recognition. This work shows great potential for skin-like epidermal electronics in long-term medical monitoring and intelligent robot applications.

17.
Biosensors (Basel) ; 13(5)2023 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-37232856

RESUMO

Recently, hydrogels have attracted great attention because of their unique properties, including stretchability, self-adhesion, transparency, and biocompatibility. They can transmit electrical signals for potential applications in flexible electronics, human-machine interfaces, sensors, actuators, et al. MXene, a newly emerged two-dimensional (2D) nanomaterial, is an ideal candidate for wearable sensors, benefitting from its surface's negatively charged hydrophilic nature, biocompatibility, high specific surface area, facile functionalization, and high metallic conductivity. However, stability has been a limiting factor for MXene-based applications, and fabricating MXene into hydrogels has been proven to significantly improve their stability. The unique and complex gel structure and gelation mechanism of MXene hydrogels require intensive research and engineering at nanoscale. Although the application of MXene-based composites in sensors has been widely studied, the preparation methods and applications of MXene-based hydrogels in wearable electronics is relatively rare. Thus, in order to facilitate the effective evolution of MXene hydrogel sensors, the design strategies, preparation methods, and applications of MXene hydrogels for flexible and wearable electronics are comprehensively discussed and summarized in this work.


Assuntos
Hidrogéis , Dispositivos Eletrônicos Vestíveis , Humanos , Condutividade Elétrica , Eletrônica
18.
Biosensors (Basel) ; 13(5)2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37232909

RESUMO

Harvesting biomechanical energy for electricity as well as physiological monitoring is a major development trend for wearable devices. In this article, we report a wearable triboelectric nanogenerator (TENG) with a ground-coupled electrode. It has a considerable output performance for harvesting human biomechanical energy and can also be used as a human motion sensor. The reference electrode of this device achieves a lower potential by coupling with the ground to form a coupling capacitor. Such a design can significantly improve the TENG's outputs. A maximum output voltage up to 946 V and a short-circuit current of 36.3 µA are achieved. The quantity of the charge that transfers during one step of an adult walking reaches 419.6 nC, while it is only 100.8 nC for the separate single-electrode-structured device. In addition, using the human body as a natural conductor to connect the reference electrode allows the device to drive the shoelaces with integrated LEDs. Finally, the wearable TENG is able to perform motion monitoring and sensing, such as human gait recognition, step count and movement speed calculation. These show great application prospects of the presented TENG device in wearable electronics.


Assuntos
Eletricidade , Dispositivos Eletrônicos Vestíveis , Adulto , Humanos , Movimento (Física) , Eletrodos , Eletrônica
19.
Nanoscale ; 15(19): 8800-8813, 2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37102599

RESUMO

Seawater contains many electrolytes, is abundant in nature, environmentally friendly, and chemically stable, and exhibits substantial potential for replacement of traditional inorganic electrolytes in photoelectrochemical-type photodetectors (PDs). Herein, one-dimensional semiconductor TeSe nanorods (NRs) with core-shell nanostructures were reported, and their morphology, optical behavior, electronic structure, and photoinduced carrier dynamics were systematically investigated. As photosensitizers, the as-resultant TeSe NRs were assembled into PDs, and the influence of the bias potential, light wavelength and intensity, and the concentration of seawater on the photo-response of TeSe NR-based PDs was evaluated. These PDs exhibited favorable photo-response performance upon illumination with light in the ultraviolet-visible-near-infrared (UV-Vis-NIR) range and even simulated sunlight. Moreover, the TeSe NR-based PDs also exhibited a long duration and cycling stability of its on-off switching and might be useful in marine monitoring.

20.
Nanomicro Lett ; 16(1): 47, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38063910

RESUMO

The development of tellurium (Te)-based semiconductor nanomaterials for efficient light-to-heat conversion may offer an effective means of harvesting sunlight to address global energy concerns. However, the nanosized Te (nano-Te) materials reported to date suffer from a series of drawbacks, including limited light absorption and a lack of surface structures. Herein, we report the preparation of nano-Te by electrochemical exfoliation using an electrolyzable room-temperature ionic liquid. Anions, cations, and their corresponding electrolytic products acting as chemical scissors can precisely intercalate and functionalize bulk Te. The resulting nano-Te has high morphological entropy, rich surface functional groups, and broad light absorption. We also constructed foam hydrogels based on poly (vinyl alcohol)/nano-Te, which achieved an evaporation rate and energy efficiency of 4.11 kg m-2 h-1 and 128%, respectively, under 1 sun irradiation. Furthermore, the evaporation rate was maintained in the range 2.5-3.0 kg m-2 h-1 outdoors under 0.5-1.0 sun, providing highly efficient evaporation under low light conditions.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa