Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Int J Mol Sci ; 24(13)2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37445602

RESUMO

As an organ system, skeletal muscle is essential for the generation of energy that underpins muscle contraction, plays a critical role in controlling energy balance and insulin-dependent glucose homeostasis, as well as vascular well-being, and regenerates following injury. To achieve homeostasis, there is requirement for "cross-talk" between the myogenic and vascular components and their regulatory factors that comprise skeletal muscle. Accordingly, this review will describe the following: [a] the embryonic cell-signaling events important in establishing vascular and myogenic cell-lineage, the cross-talk between endothelial cells (EC) and myogenic precursors underpinning the development of muscle, its vasculature and the satellite-stem-cell (SC) pool, and the EC-SC cross-talk that maintains SC quiescence and localizes ECs to SCs and angio-myogenesis postnatally; [b] the vascular-myocyte cross-talk and the actions of insulin on vasodilation and capillary surface area important for the uptake of glucose/insulin by myofibers and vascular homeostasis, the microvascular-myocyte dysfunction that characterizes the development of insulin resistance, diabetes and hypertension, and the actions of estrogen on muscle vasodilation and growth in adults; [c] the role of estrogen in utero on the development of fetal skeletal-muscle microvascularization and myofiber hypertrophy required for metabolic/vascular homeostasis after birth; [d] the EC-SC interactions that underpin myofiber vascular regeneration post-injury; and [e] the role of the skeletal-muscle vasculature in Duchenne muscular dystrophy.


Assuntos
Células Endoteliais , Músculo Esquelético , Músculo Esquelético/fisiologia , Contração Muscular , Insulina , Glucose , Desenvolvimento Muscular/fisiologia
2.
Am J Physiol Heart Circ Physiol ; 320(4): H1712-H1723, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33666502

RESUMO

Uterine spiral artery remodeling (UAR) is essential for placental perfusion and fetal development. A defect in UAR underpins placental ischemia disorders, e.g., preeclampsia, that result in maternal systemic vascular endothelial dysfunction and hypertension. We have established a model of impaired UAR by prematurely elevating maternal serum estradiol levels during the first trimester of baboon pregnancy. However, it is unknown whether this experimental paradigm is associated with maternal vascular endothelial dysfunction. Therefore, in the present study baboons were administered estradiol on days 25-59 of gestation to suppress UAR and maternal vascular function determined on day 165 (term = 184 days) peripherally and in skeletal muscle, which accounts for over 40% of body mass and 25% of resting systemic vascular resistance. Maternal serum sFlt-1 levels were 2.5-fold higher (P < 0.05), and skeletal muscle arteriolar endothelial nitric oxide synthase (eNOS) protein expression and luminal area, and skeletal muscle capillary density were 30-50% lower (P < 0.05) in UAR suppressed baboons. Coinciding with these changes in eNOS expression, luminal area, and capillary density, maternal brachial artery flow-mediated dilation and volume flow were 70% and 55% lower (P < 0.05), respectively, and mean arterial blood pressure 29% higher (P < 0.01) in UAR defective baboons. In summary, maternal vascular function was disrupted in a baboon model of impaired UAR. These results highlight the translational impact of this primate model and relevance to adverse conditions of human pregnancy underpinned by improper uterine artery transformation.NEW & NOTEWORTHY Maternal vascular dysfunction is a hallmark of abnormal human pregnancy, particularly early-onset preeclampsia, elicited by impaired UAR. The present study makes the novel discovery that maternal systemic vascular dysfunction was induced in a baboon experimental model of impaired UAR. This study highlights the translational relevance of this nonhuman primate model to adverse conditions of human pregnancy underpinned by defective UAR.


Assuntos
Pressão Arterial , Artéria Braquial/fisiopatologia , Hipertensão Induzida pela Gravidez/fisiopatologia , Microvasos/fisiopatologia , Músculo Esquelético/irrigação sanguínea , Artéria Uterina/fisiopatologia , Remodelação Vascular , Vasodilatação , Animais , Artéria Braquial/metabolismo , Modelos Animais de Doenças , Estradiol/análogos & derivados , Feminino , Idade Gestacional , Hipertensão Induzida pela Gravidez/induzido quimicamente , Hipertensão Induzida pela Gravidez/metabolismo , Densidade Microvascular , Microvasos/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Estresse Oxidativo , Papio anubis , Gravidez , Primeiro Trimestre da Gravidez , Artéria Uterina/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/sangue
3.
Reproduction ; 160(1): 31-37, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32272450

RESUMO

Placental extravillous trophoblast remodeling of the uterine spiral arteries is important for promoting blood flow to the placenta and fetal development. Heparin-binding EGF-like growth factor (HB-EGF), an EGF family member, stimulates differentiation and invasive capacity of extravillous trophoblasts in vitro. Trophoblast expression and maternal levels of HB-EGF are reduced at term in women with preeclampsia, but it is uncertain whether HB-EGF is downregulated earlier when it may contribute to placental insufficiency. A nonhuman primate model has been established in which trophoblast remodeling of the uterine spiral arteries is suppressed by shifting the rise in estrogen from the second to the first trimester of baboon pregnancy. In the present study, we used this model to determine if placental HB-EGF is altered by prematurely elevating estrogen early in baboon gestation. Uterine spiral artery remodeling and placental expression of HB-EGF and other EGF family members were assessed on day 60 of gestation in baboons treated with estradiol (E2) daily between days 25 and 59 of gestation (term = 184 days). The percentages of spiral artery remodeling were 90, 84 and 70% lower (P < 0.01), respectively, for vessels of 26-50, 51-100 and >100 µm diameter in E2-treated compared with untreated baboons. HB-EGF protein quantified by immunocytochemical staining/image analysis was decreased three-fold (P < 0.01) in the placenta of E2-treated versus untreated baboons, while amphiregulin (AREG) and EGF expression was unaltered. Therefore, we propose that HB-EGF modulates the estrogen-sensitive remodeling of the uterine spiral arteries by the extravillous trophoblast in early baboon pregnancy.


Assuntos
Estrogênios/metabolismo , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/metabolismo , Placenta/metabolismo , Trofoblastos/metabolismo , Útero/metabolismo , Animais , Feminino , Papio , Gravidez
4.
Reproduction ; 149(5): 453-64, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25687410

RESUMO

Prostaglandin F2α (PGF2α) has been proposed as a functional luteolysin in primates. However, administration of PGF2α or prostaglandin synthesis inhibitors in vivo both initiate luteolysis. These contradictory findings may reflect changes in PGF2α receptors (PTGFRs) or responsiveness to PGF2α at a critical point during the life span of the corpus luteum. The current study addressed this question using ovarian cells and tissues from female cynomolgus monkeys and luteinizing granulosa cells from healthy women undergoing follicle aspiration. PTGFRs were present in the cytoplasm of monkey granulosa cells, while PTGFRs were localized in the perinuclear region of large, granulosa-derived monkey luteal cells by mid-late luteal phase. A PTGFR agonist decreased progesterone production in luteal cells obtained at mid-late and late luteal phases, but did not decrease progesterone production by granulosa cells or luteal cells from younger corpora lutea. These findings are consistent with a role for perinuclear PTGFRs in functional luteolysis. This concept was explored using human luteinizing granulosa cells maintained in vitro as a model for luteal cell differentiation. In these cells, PTGFRs relocated from the cytoplasm to the perinuclear area in an estrogen- and estrogen receptor-dependent manner. Similar to our findings with monkey luteal cells, human luteinizing granulosa cells with perinuclear PTGFRs responded to a PTGFR agonist with decreased progesterone production. These data support the concept that PTGFR stimulation promotes functional luteolysis only when PTGFRs are located in the perinuclear region. Estrogen receptor-mediated relocation of PTGFRs within luteal cells may be a necessary step in the initiation of luteolysis in primates.


Assuntos
Estrogênios/farmacologia , Células da Granulosa/patologia , Células Lúteas/patologia , Luteólise/fisiologia , Progesterona/metabolismo , Receptores de Prostaglandina/metabolismo , Animais , Western Blotting , Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Citoplasma/metabolismo , Dinoprosta/farmacologia , Feminino , Imunofluorescência , Células da Granulosa/efeitos dos fármacos , Células da Granulosa/metabolismo , Humanos , Células Lúteas/efeitos dos fármacos , Células Lúteas/metabolismo , Luteólise/efeitos dos fármacos , Macaca fascicularis , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Prostaglandina/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
5.
Endocrine ; 85(1): 417-427, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38478198

RESUMO

PURPOSE: We previously showed that offspring delivered to baboons in which levels of estradiol (E2) were suppressed during the second half of gestation exhibit insulin resistance. Mitochondria are essential for the production of ATP as the main source of energy for intracellular metabolic pathways, and skeletal muscle of type 2 diabetics exhibit mitochondrial abnormalities. Mitochondria express estrogen receptor ß and E2 enhances mitochondrial function in adults. Therefore, the current study ascertained whether exposure of the fetus to E2 is essential for mitochondrial development. METHODS: Levels of ATP synthase and citrate synthase and the morphology of mitochondria were determined in fetal skeletal muscle obtained near term from baboons untreated or treated daily with the aromatase inhibitor letrozole or letrozole plus E2. RESULTS: Specific activity and amount of ATP synthase were 2-fold lower (P < 0.05) in mitochondria from skeletal muscle of E2 suppressed letrozole-treated fetuses and restored to normal by treatment with letrozole plus E2. Immunocytochemistry showed that in contrast to the punctate formation of mitochondria in myocytes of untreated and letrozole plus E2 treated animals, mitochondria appeared to be diffuse in myocytes of estrogen-suppressed fetuses. However, citrate synthase activity and levels of proteins that control mitochondrial fission/fusion were similar in estrogen replete and suppressed animals. CONCLUSION: We suggest that estrogen is essential for fetal skeletal muscle mitochondrial development and thus glucose homeostasis in adulthood.


Assuntos
Estradiol , Resistência à Insulina , Letrozol , Músculo Esquelético , Triazóis , Animais , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Letrozol/farmacologia , Feminino , Resistência à Insulina/fisiologia , Gravidez , Estradiol/farmacologia , Triazóis/farmacologia , Citrato (si)-Sintase/metabolismo , Mitocôndrias Musculares/efeitos dos fármacos , Mitocôndrias Musculares/metabolismo , Estrogênios/farmacologia , Nitrilas/farmacologia , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Inibidores da Aromatase/farmacologia , Feto/efeitos dos fármacos , Feto/metabolismo
6.
J Endocrinol ; 262(1)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38738915

RESUMO

We recently showed that the ratio of capillaries to myofibers in skeletal muscle, which accounts for 80% of insulin-directed glucose uptake and metabolism, was reduced in baboon fetuses in which estrogen was suppressed by maternal letrozole administration. Since vascular endothelial growth factor (VEGF) promotes angiogenesis, the present study determined the impact of estrogen deprivation on fetal skeletal muscle VEGF expression, capillary development, and long-term vascular and metabolic function in 4- to 8-year-old adult offspring. Maternal baboons were untreated or treated with letrozole or letrozole plus estradiol on days 100-164 of gestation (term = 184 days). Skeletal muscle VEGF protein expression was suppressed by 45% (P < 0.05) and correlated (P = 0.01) with a 47% reduction (P < 0.05) in the number of capillaries per myofiber area in fetuses of baboons in which serum estradiol levels were suppressed 95% (P < 0.01) by letrozole administration. The reduction in fetal skeletal muscle microvascularization was associated with a 52% decline (P = 0.02) in acetylcholine-induced brachial artery dilation and a 23% increase (P = 0.01) in mean arterial blood pressure in adult progeny of letrozole-treated baboons, which was restored to normal by letrozole plus estradiol. The present study indicates that estrogen upregulates skeletal muscle VEGF expression and systemic microvessel development within the fetus as an essential programming event critical for ontogenesis of systemic vascular function and insulin sensitivity/glucose homeostasis after birth in primate offspring.


Assuntos
Estradiol , Estrogênios , Letrozol , Músculo Esquelético , Nitrilas , Triazóis , Fator A de Crescimento do Endotélio Vascular , Animais , Feminino , Letrozol/farmacologia , Músculo Esquelético/metabolismo , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Gravidez , Nitrilas/farmacologia , Estrogênios/farmacologia , Estradiol/farmacologia , Triazóis/farmacologia , Neovascularização Fisiológica/efeitos dos fármacos , Papio , Masculino , Feto/metabolismo , Feto/irrigação sanguínea , Feto/efeitos dos fármacos , Capilares/metabolismo , Capilares/efeitos dos fármacos , Inibidores da Aromatase/farmacologia
7.
Biol Reprod ; 89(6): 132, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24132960

RESUMO

Using the baboon as a model for studies of human reproductive biology, we previously showed that placental estrogen regulates fetal ovarian follicle development. In this study, offspring of baboons untreated or treated in utero with the aromatase inhibitor letrozole (estradiol reduced >95%) or letrozole and estradiol were reared to adulthood to determine whether estrogen programming of the fetal ovary impacted puberty and reproduction in adulthood. All offspring exhibited normal growth and blood pressure/chemistries. Puberty onset in untreated baboons (43.2 ± 1.4 mo) was delayed (P < 0.01) in animals of letrozole-treated mothers (49.0 ± 1.2 mo) and normal in offspring of mothers treated with letrozole and estradiol (42.7 ± 0.8 mo). During the first 2 yr postmenarche, menstrual cycles in estrogen-suppressed animals (43.2 ± 1.3 days) were longer (P < 0.05) than in untreated baboons (38.3 ± 0.5 days) or those treated with letrozole and estrogen (39.6 ± 0.8 days). Moreover, in estrogen-suppressed offspring, serum levels of estradiol were lower and follicle-stimulating hormone greater (P < 0.05) in the follicular and luteal phases, and the elevation in luteal-phase progesterone extended (P < 0.02). Thus, puberty onset was delayed and menstrual cycles prolonged and associated with altered serum hormone levels in baboon offspring that developed in an intrauterine environment in which estradiol levels were suppressed. Because puberty and follicle development, as shown previously, were normal in baboons treated in utero with letrozole and estradiol, we propose that fetal ovarian development and timely onset of puberty in the primate is programmed by fetal exposure to placental estrogen.


Assuntos
Estrogênios/deficiência , Ovário/efeitos dos fármacos , Ovário/embriologia , Efeitos Tardios da Exposição Pré-Natal , Puberdade , Animais , Estradiol/farmacologia , Estrogênios/farmacologia , Feminino , Desenvolvimento Fetal/efeitos dos fármacos , Feto/embriologia , Letrozol , Modelos Animais , Nitrilas/farmacologia , Papio , Placenta/metabolismo , Gravidez , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Maturidade Sexual , Triazóis/farmacologia
8.
Ultrasound Med Biol ; 49(12): 2557-2564, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37749012

RESUMO

OBJECTIVE: During early human pregnancy, placental trophoblasts remodel spiral arteries into distensible low-resistance vessels to promote placental perfusion. We have established a model of impaired spiral artery remodeling (SAR) by elevating estradiol levels in the first trimester of baboon pregnancy. In the present study, B-flow/spatiotemporal image correlation (STIC) M-mode ultrasonography, a non-Doppler technology for sharp rendering of vessel dimensions, was used to determine whether spiral artery distensibility was altered in SAR-suppressed baboons. Contrast-enhanced ultrasound/microbubble imaging was also performed to determine whether it detected changes in placenta intervillous space perfusion in SAR-suppressed baboons. METHODS: The two imaging procedures were performed in the first trimester in baboons not treated or treated with estradiol to suppress SAR. RESULTS: Spiral artery distensibility, that is, luminal diameter at systole minus diameter at diastole, and volume flow as quantified by B-flow/STIC M-mode were 26% (p = 0.03) and 55% (p = 0.059) lower, respectively, in SAR-suppressed baboons. However, placental intervillous space flow rate and video intensity plateau levels reflecting blood perfusion, quantified by contrast-enhanced ultrasound/microbubble imaging, were unaltered in SAR-suppressed baboons. CONCLUSION: The results indicate that B-flow/STIC M-mode ultrasonography provides a non-invasive method to detect reduced distensibility and, thus, function of spiral arteries across the cardiac cycle in the first trimester in a primate model of impaired SAR. This study represents a first step in determining whether B-flow/STIC M-mode detects a similar defect in SAR early in adverse human pregnancy. This would provide an avenue to develop therapeutic modalities to prevent the devastating consequences of impaired SAR.


Assuntos
Microbolhas , Placenta , Animais , Gravidez , Feminino , Humanos , Placenta/diagnóstico por imagem , Placenta/irrigação sanguínea , Primeiro Trimestre da Gravidez , Artérias/diagnóstico por imagem , Estradiol , Ultrassonografia , Papio , Perfusão
9.
Am J Physiol Heart Circ Physiol ; 302(10): H1936-44, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22427518

RESUMO

The present study was conducted to determine the impact of suppressing trophoblast remodeling of the uterine spiral arteries by prematurely elevating estrogen levels in the first trimester of baboon pregnancy on uterine and umbilical blood flow dynamics. Uteroplacental blood flow was assessed by Doppler ultrasonography after acute administration of saline (basal state) and serotonin on days 60, 100, and 160 of gestation (term: 184 days) to baboons in which uterine spiral artery remodeling had been suppressed by the administration of estradiol on days 25-59 of gestation. Maternal blood pressure in the basal state was increased (P < 0.01), and uterine artery diastolic notching and the umbilical artery pulsatility index and systolic-to-diastolic ratio, reflecting downstream flow impedance, were increased (P < 0.01) after serotonin administration on day 160, but not earlier, in baboons treated with estradiol in early gestation. These changes in uteroplacental flow dynamics in serotonin-infused, estradiol-treated animals were accompanied by a decrease (P < 0.05) in uterine and umbilical artery volume flow and fetal bradycardia. The results of this study show that suppression of uterine artery remodeling by advancing the rise in estrogen from the second trimester to the first trimester disrupted uteroplacental blood flow dynamics and fetal homeostasis after vasochallenge late in primate pregnancy.


Assuntos
Estrogênios/farmacologia , Feto/irrigação sanguínea , Papio/fisiologia , Prenhez/fisiologia , Fluxo Sanguíneo Regional/efeitos dos fármacos , Trofoblastos/efeitos dos fármacos , Artérias Umbilicais/fisiologia , Artéria Uterina/efeitos dos fármacos , Animais , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/fisiologia , Estradiol/sangue , Feminino , Frequência Cardíaca/efeitos dos fármacos , Frequência Cardíaca/fisiologia , Homeostase/efeitos dos fármacos , Homeostase/fisiologia , Modelos Animais , Gravidez , Fluxo Sanguíneo Regional/fisiologia , Serotonina/farmacologia , Agonistas do Receptor de Serotonina/farmacologia , Trofoblastos/fisiologia , Artéria Uterina/fisiologia
10.
Endocrine ; 78(1): 32-41, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35715687

RESUMO

Using our nonhuman primate baboon model, we showed that offspring born to mothers deprived of estrogen during the second half of gestation exhibited insulin resistance and a deficit in first phase insulin release. Although insulin resistance was not due to an impairment of fetal or offspring growth, nor to an alteration in adipose or hepatic sensitivity to insulin, skeletal muscle microvacularization critical for delivery of nutrients/insulin was significantly reduced in fetuses and offspring deprived of estrogen in utero. Skeletal muscle myofiber maturation occurs in utero and estrogen modulates myofiber growth in adults. Therefore, the current study determined whether fetal skeletal muscle development was altered in baboons in which estradiol levels were suppressed/restored during the second half of gestation by maternal treatment with letrozole ± estradiol benzoate. In estrogen-suppressed animals, fetal skeletal muscle fascicles were structurally less organized, smaller, and comprised of slow type I and fast type II fibers, the size, but not the number of which were smaller than in untreated baboons. Moreover, the proportion of non-muscle fiber tissue was greater and that of muscle fibers lower in estrogen-deprived fetuses. Thus, the maintenance of fetal body weight in estrogen-deprived animals was maintained at the expense of muscle fibers and likely reflected increased deposition of non-muscle proteins. Importantly, fetal skeletal muscle development, including fascicle organization, myofiber size and composition was normal in baboons treated with letrozole and estradiol benzoate. Collectively, these and our previous findings support our proposal that exposure of the fetus to estrogen is important for fetal skeletal muscle development and glucose homeostasis in adulthood.


Assuntos
Inibidores da Aromatase , Resistência à Insulina , Animais , Inibidores da Aromatase/farmacologia , Estrogênios , Desenvolvimento Fetal , Feto/fisiologia , Insulina , Letrozol/farmacologia , Desenvolvimento Muscular , Músculo Esquelético , Nitrilas/farmacologia , Papio , Triazóis
11.
Endocrinology ; 163(4)2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35134145

RESUMO

Uterine spiral artery remodeling (SAR) is essential for promoting placental perfusion and fetal development. A defect in SAR results in placental ischemia and increase in placental expression and serum levels of the soluble fms-like tyrosine kinase-1 (sFlt-1) receptor that binds to and suppresses vascular endothelial growth factor (VEGF) bioavailability, thereby leading to maternal vascular dysfunction. We have established a nonhuman primate model of impaired SAR and maternal vascular dysfunction by prematurely elevating estradiol levels in early baboon pregnancy. However, it is unknown whether this primate model of defective SAR involves an increase in placental expression of sFlt-1, which may suppress VEGF bioavailability and thus SAR in the first trimester. Therefore, to establish the role of sFlt-1 in early pregnancy, SAR was quantified in baboons treated on days 25 through 59 of gestation (term = 184 days) with estradiol or with the sFlt-1 gene targeted selectively to the placental basal plate by ultrasound-mediated/microbubble-facilitated gene delivery technology. Placental basal plate sFlt-1 protein expression was 2-fold higher (P < 0.038) and the level of SAR for vessels > 25 µm in diameter was 72% and 63% lower (P < 0.01), respectively, in estradiol-treated and sFlt-1 gene-treated baboons than in untreated animals. In summary, prematurely elevating estradiol levels or sFlt-1 gene delivery increased placental basal plate sFlt-1 protein expression and suppressed SAR in early baboon pregnancy. This study makes the novel discovery that in elevated levels sFlt-1 has a role both in suppressing SAR in early primate pregnancy and maternal vascular endothelial function in late gestation.


Assuntos
Placenta , Pré-Eclâmpsia , Animais , Estradiol/metabolismo , Feminino , Humanos , Papio , Placenta/metabolismo , Gravidez , Primatas , Trofoblastos/metabolismo , Artéria Uterina , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
12.
Methods Mol Biol ; 2418: 77-93, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35119661

RESUMO

In the field of protein biology, immunology-based techniques are continuously evolving for the detection and quantification of individual protein levels, protein-protein interaction, and protein modifications in cells and tissues. The proximity ligation assay (PLA), a method of detection that combines immunologic and PCR-based approaches, was developed to overcome some of the drawbacks that are inherent with other detection methods. The PLA allows for very sensitive and discretely quantifiable measures of unmodified, native protein levels and protein-protein interaction/modification complexes in situ in both fixed tissues and cultured cells. We describe herein the PLA method and its applicability to quantify the effects of estrogen on expression of angioregulatory factors, e.g., endothelial nitric oxide synthase (eNOS) in the vasculature, vascular endothelial growth factor (VEGF) in the placenta, and melanocortin 2 receptor (MC2R)/accessory protein (MRAP) in the fetal adrenal of the nonhuman primate.


Assuntos
Estrogênios , Fator A de Crescimento do Endotélio Vascular , Animais , Estrogênios/farmacologia , Feminino , Gravidez , Primatas , Processamento de Proteína Pós-Traducional , Proteômica
13.
Endocrinology ; 163(5)2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35325097

RESUMO

We have shown that normal weight offspring born to estrogen-deprived baboons exhibited insulin resistance, although liver and adipose function and insulin receptor and glucose transporter expression were unaltered. The blood microvessels have an important role in insulin action by delivering insulin and glucose to target cells. Although little is known about the regulation of microvessel development during fetal life, estrogen promotes capillary proliferation and vascular function in the adult. Therefore, we tested the hypothesis that estrogen promotes fetal microvessel development and thus vascular function and insulin sensitivity in offspring. Capillary/myofiber ratio was decreased 75% (P < 0.05) in skeletal muscle, a major insulin target tissue, of fetal baboons in which estradiol levels were depleted by administration of aromatase inhibitor letrozole. This was sustained after birth, resulting in a 50% reduction (P < 0.01) in microvessel expansion; 65% decrease (P < 0.01) in arterial flow-mediated dilation, indicative of vascular endothelial dysfunction; and 35% increase (P < 0.01) in blood pressure in offspring from estrogen-deprived baboons, changes prevented by letrozole and estradiol administration. Along with vascular dysfunction, peak insulin and glucose levels during a glucose tolerance test were greater (P < 0.05 to P < 0.01) and the homeostasis model of insulin resistance 2-fold higher (P < 0.01) in offspring of letrozole-treated than untreated animals, indicative of insulin resistance. This study makes the novel discovery that estrogen promotes microvascularization in the fetus and thus normal vascular development and function required for eliciting insulin sensitivity in offspring and that placental hormonal secretions, independent from improper fetal growth, are an important determinant of risk of developing insulin resistance.


Assuntos
Resistência à Insulina , Animais , Estradiol/farmacologia , Estrogênios/farmacologia , Estrogênios/fisiologia , Feminino , Feto , Glucose , Insulina , Letrozol/farmacologia , Nitrilas/farmacologia , Papio , Placenta , Gravidez , Triazóis/farmacologia
14.
Genes (Basel) ; 12(8)2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34440429

RESUMO

Uterine spiral artery remodeling is essential for placental perfusion and fetal growth and, when impaired, results in placental ischemia and pregnancy complications, e.g., fetal growth restriction, preeclampsia, premature birth. Despite the high incidence of adverse pregnancies, current treatment options are limited. Accordingly, research has shifted to the development of gene therapy technologies that provide targeted delivery of "payloads" to the placenta while limiting maternal and fetal exposure. This review describes the current strategies, including placental targeting peptide-bound liposomes, nanoparticle or adenovirus constructs decorated with specific peptide sequences and placental gene promoters delivered via maternal IV injection, directly into the placenta or the uterine artery, as well as noninvasive site-selective targeting of regulating genes conjugated with microbubbles via contrast-enhanced ultrasound. The review also provides a perspective on the effectiveness of these technologies in various animal models and their practicability and potential use for targeted placental delivery of therapeutics and genes in adverse human pregnancies affected by placental dysfunction.


Assuntos
Retardo do Crescimento Fetal/terapia , Terapia Genética , Peptídeos/genética , Placentação/genética , Feminino , Retardo do Crescimento Fetal/genética , Retardo do Crescimento Fetal/patologia , Humanos , Lipossomos/uso terapêutico , Nanopartículas/química , Nanopartículas/uso terapêutico , Peptídeos/uso terapêutico , Placenta/efeitos dos fármacos , Placenta/fisiologia , Placentação/efeitos dos fármacos , Gravidez , Útero/efeitos dos fármacos , Útero/crescimento & desenvolvimento
15.
Am J Physiol Heart Circ Physiol ; 298(3): H881-9, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20023123

RESUMO

Although estrogen regulates important aspects of maternal cardiovascular physiology, the role of estrogen on uteroplacental and fetal blood flow is incompletely understood. This study tested the hypothesis that chronically suppressing endogenous estrogen production during the second half of baboon pregnancy alters uterine and fetal blood flow dynamics assessed by ultrasonography. Pregnant baboons were untreated or treated daily with the aromatase inhibitor letrozole or letrozole plus estradiol on days 100-160 of gestation (term = 184 days). Blood flow dynamics were determined by Doppler ultrasonography on day 60 and longitudinally between days 110 and 160 of gestation. Letrozole decreased maternal serum estradiol and estrone concentrations by 95% (P < 0.001). Fetal growth biometrical parameters increased (P < 0.001) between days 110 and 160 of gestation and were similar in untreated and letrozole-treated animals. Uterine, umbilical, and fetal middle cerebral artery pulsatility index and resistance index declined (P < 0.01) by 30-50% and uterine artery volume flow increased sixfold (P < 0.001) between days 60 and 160, but values were similar in untreated, letrozole-treated, and letrozole plus estradiol-treated baboons. Thus uterine and fetal artery blood flow indexes, uterine artery volume flow, and fetal growth were maintained at normal levels despite chronic estrogen suppression in the second half of baboon pregnancy. This suggests that elevated levels of endogenous estrogen are not required to maintain low impedance blood flow within the uteroplacental vascular bed during the second half of nonhuman primate pregnancy.


Assuntos
Estrogênios/deficiência , Desenvolvimento Fetal/fisiologia , Feto/irrigação sanguínea , Prenhez/fisiologia , Fluxo Sanguíneo Regional/fisiologia , Útero/irrigação sanguínea , Animais , Inibidores da Aromatase/farmacologia , Pressão Sanguínea/fisiologia , Peso Corporal/fisiologia , Estradiol/sangue , Estrogênios/fisiologia , Feminino , Desenvolvimento Fetal/efeitos dos fármacos , Letrozol , Modelos Animais , Nitrilas/farmacologia , Papio anubis , Circulação Placentária/efeitos dos fármacos , Circulação Placentária/fisiologia , Gravidez , Prenhez/efeitos dos fármacos , Fluxo Sanguíneo Regional/efeitos dos fármacos , Triazóis/farmacologia , Artérias Umbilicais/fisiologia
16.
Mol Reprod Dev ; 77(5): 430-8, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20140967

RESUMO

Estrogen has an important role in the reconstruction of a new vascular network in the endometrium during each menstrual cycle; however, the underlying mechanisms are incompletely understood. Angiopoietin-1 (Ang-1) promotes vessel assembly, whereas Ang-2 and thrombospondin-1 (TSP-1) cause vessel breakdown. To determine the potential effect of estrogen on the expression of these angioregulatory factors in the endometrium, Ang-1, Ang-2, TSP-1, and Tie-2 receptor mRNA levels were assessed by real-time reverse transcriptase polymerase chain reaction in glandular epithelial and stromal cells isolated from the endometrium of ovariectomized baboons treated acutely with estradiol. Corresponding protein expression was assessed by immunocytochemistry and the proximity ligation assay (PLA) during advancing stages of the baboon menstrual cycle. Serum estradiol levels in ovariectomized baboons were 400 pg/ml within 4-6 hr of estradiol treatment. Ang-1 mRNA levels in glandular epithelial cells increased threefold (P < 0.01) within 4 hr of estradiol administration. In contrast, TSP-1 mRNA levels decreased four- to fivefold (P < 0.01) in endometrial glandular epithelial and stromal cells 4-6 hr after estradiol, whereas Ang-2 and Tie-2 expression was unaltered. Immunostaining for Ang-1 increased, TSP-1 decreased, and Ang-2 and Tie-2 were unaltered in the endometrium during the secretory compared with the proliferative phase of the cycle. Endometrial Ang-1 protein expression, quantified by PLA, increased 10-fold (P < 0.05) between the early proliferative and late proliferative/mid-secretory phases of the menstrual cycle in association with the rise in estrogen. In summary, estrogen induced a rapid, divergent, and cell-specific change in expression of angiostimulatory and angioinhibitory growth factors in the endometrium of the nonhuman primate.


Assuntos
Angiopoietina-1/biossíntese , Angiopoietina-2/biossíntese , Endométrio/fisiologia , Estradiol/farmacologia , Receptor TIE-2/biossíntese , Trombospondina 1/metabolismo , Análise de Variância , Angiopoietina-1/genética , Angiopoietina-2/genética , Animais , Endométrio/metabolismo , Estradiol/sangue , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Imuno-Histoquímica , Ciclo Menstrual/fisiologia , Ovariectomia , Papio anubis , Receptor TIE-2/genética , Trombospondina 1/biossíntese , Trombospondina 1/genética
17.
Reprod Sci ; 27(10): 1932-1942, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32548805

RESUMO

Extravillous trophoblast remodeling of the uterine spiral arteries is essential for promoting blood flow to the placenta and fetal development, but little is known about the regulation of this process. A defect in spiral artery remodeling underpins adverse conditions of human pregnancy, notably early-onset preeclampsia and fetal growth restriction, which result in maternal and fetal morbidity and mortality. Many in vitro studies have been conducted to determine the ability of growth and other factors to stimulate trophoblast cells to migrate across a synthetic membrane. Clinical studies have investigated whether the maternal levels of various factors are altered during abnormal human pregnancy. Animal models have been established to assess the ability of various factors to recapitulate the pathophysiological symptoms of preeclampsia. This review analyzes the results of the in vitro, clinical, and animal studies and describes a nonhuman primate experimental paradigm of defective uterine artery remodeling to study the regulation of vessel remodeling.


Assuntos
Placenta/irrigação sanguínea , Pré-Eclâmpsia/fisiopatologia , Artéria Uterina/fisiopatologia , Útero/irrigação sanguínea , Remodelação Vascular/fisiologia , Animais , Feminino , Humanos , Gravidez
18.
Biol Reprod ; 81(2): 406-14, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19403930

RESUMO

The foundation for development of the male reproduction system occurs in utero, but relatively little is known about the regulation of primate fetal testis maturation. Our laboratories have shown that estrogen regulates key aspects of the physiology of pregnancy and fetal development. Therefore, in the present study, we characterized and quantified germ cells and Sertoli cells in the fetal baboon testis in late normal gestation (i.e., Day 165; term is 184 days) and in baboons administered the aromatase inhibitor letrozole throughout the second half of gestation to assess the impact of endogenous estrogen on fetal testis development. In untreated baboons, the seminiferous cords were comprised of undifferentiated (i.e., type A) spermatogonia classified by their morphology as dark (Ad) or pale (Ap), gonocytes (precursors of type A spermatogonia), unidentified cells (UI), and Sertoli cells. In letrozole-treated baboons, serum estradiol levels were decreased by 95%. The number per milligram of fetal testis (x10(4)) of Ad spermatogonia (0.42 +/- 0.11) was 45% lower (P = 0.03), and that of gonocytes (0.58 +/- 0.06) and UI (0.45 +/- 0.12) was twofold greater (P < 0.01 and P = 0.06, respectively), than in untreated baboons. Moreover, in the seminiferous cords of estrogen-deprived baboons, the basement membrane appeared fragmented, the germ cells and Sertoli cells appeared disorganized, and vacuoles were present. We conclude that endogenous estrogen promotes fetal testis development and that the changes in the germ cell population in the estrogen-deprived baboon fetus may impair spermatogenesis and fertility in adulthood.


Assuntos
Estrogênios/fisiologia , Papio anubis/embriologia , Túbulos Seminíferos/crescimento & desenvolvimento , Espermatozoides/crescimento & desenvolvimento , Testículo/embriologia , Análise de Variância , Animais , Inibidores da Aromatase/farmacologia , Membrana Basal/citologia , Membrana Basal/efeitos dos fármacos , Membrana Basal/embriologia , Caspase 3/metabolismo , Ciclo Celular/efeitos dos fármacos , Proteínas de Ciclo Celular/metabolismo , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/efeitos dos fármacos , Estradiol/sangue , Estrogênios/deficiência , Feminino , Peso Fetal/efeitos dos fármacos , Hormônio Foliculoestimulante/sangue , Letrozol , Hormônio Luteinizante/sangue , Masculino , Nitrilas/farmacologia , Tamanho do Órgão/efeitos dos fármacos , Gravidez , Distribuição Aleatória , Túbulos Seminíferos/citologia , Túbulos Seminíferos/efeitos dos fármacos , Células de Sertoli/citologia , Células de Sertoli/efeitos dos fármacos , Espermatogênese/efeitos dos fármacos , Espermatozoides/citologia , Espermatozoides/efeitos dos fármacos , Estatísticas não Paramétricas , Testículo/efeitos dos fármacos , Testículo/enzimologia , Testículo/ultraestrutura , Testosterona/sangue , Triazóis/farmacologia
19.
Endocrinology ; 160(6): 1492-1505, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-31002314

RESUMO

Extravillous trophoblast (EVT) uterine artery remodeling (UAR) promotes placental blood flow, but UAR regulation is unproven. Elevating estradiol (E2) in early baboon pregnancy suppressed UAR and EVT vascular endothelial growth factor (VEGF) expression, but this did not prove that VEGF mediated this process. Therefore, our primate model of prematurely elevating E2 and contrast-enhanced ultrasound cavitation of microbubble (MB) carriers was used to deliver VEGF DNA to the placental basal plate (PBP) to establish the role of VEGF in UAR. Baboons were treated on days 25 to 59 of gestation (term, 184 days) with E2 alone or with E2 plus VEGF DNA-conjugated MBs briefly infused via a maternal peripheral vein on days 25, 35, 45, and 55. At each of these times an ultrasound beam was directed to the PBP to collapse the MBs and release VEGF DNA. VEGF DNA-labeled MBs per contrast agent was localized in the PBP but not the fetus. Remodeling of uterine arteries >25 µm in diameter on day 60 was 75% lower (P < 0.001) in E2-treated (7% ± 2%) than in untreated baboons (30% ± 4%) and was restored to normal by E2/VEGF. VEGF protein levels (signals/nuclear area) within the PBP were twofold lower (P < 0.01) in E2-treated (4.2 ± 0.9) than in untreated (9.8 ± 2.8) baboons and restored to normal by E2/VEGF (11.9 ± 1.6), substantiating VEGF transfection. Thus, VEGF gene delivery selectively to the PBP prevented the decrease in UAR elicited by prematurely elevating E2 levels, establishing the role of VEGF in regulating UAR in vivo during primate pregnancy.


Assuntos
Estradiol/farmacologia , Placenta/efeitos dos fármacos , Artéria Uterina/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/farmacologia , Remodelação Vascular/efeitos dos fármacos , Animais , Feminino , Papio , Placenta/metabolismo , Gravidez , Trofoblastos/efeitos dos fármacos , Trofoblastos/metabolismo
20.
Endocrinology ; 149(10): 5078-87, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18566115

RESUMO

We have shown that advancing the increase in maternal serum estrogen levels from the second to the first third of baboon pregnancy suppressed extravillous cytotrophoblast (EVT) spiral artery invasion. Because vascular endothelial growth factor (VEGF) promotes EVT invasion, the present study determined whether EVT VEGF expression is altered by prematurely elevating estrogen in early pregnancy. Placental basal plate was obtained on d 60 of gestation (term is 184 d) from baboons treated daily on d 25-59 with estradiol (0.35 mg/d sc), which increased maternal peripheral serum estradiol levels 3-fold above normal. Overall percentage of uterine arteries (25 to more than 100 microm in diameter) invaded by EVT assessed by image analysis in untreated baboons (29.11+/-5.78%) was decreased 4.5-fold (P<0.001) by prematurely elevating estrogen (6.55+/-1.83%). VEGF mRNA levels in EVT isolated by laser capture microdissection from the anchoring villi of untreated baboons (6.77+/-2.20) were decreased approximately 5-fold (P<0.05, ANOVA) by estradiol (1.37+/-0.29). Uterine vein serum levels of the truncated soluble fms-like receptor, which controls VEGF bioavailability, in untreated baboons (403+/-37 pg/ml) were increased 3-fold (P<0.01) by estrogen treatment (1127+/-197 pg/ml). Thus, placental EVT expression of VEGF mRNA was decreased and serum soluble truncated fms-like receptor levels increased in baboons in which EVT invasion of the uterine spiral arteries was suppressed by advancing the rise in estrogen from the second to the first third of pregnancy. We suggest that VEGF mediates the decline in EVT vessel invasion induced by estrogen in early primate pregnancy.


Assuntos
Estrogênios/sangue , Prenhez/fisiologia , Trofoblastos/fisiologia , Útero/irrigação sanguínea , Fator A de Crescimento do Endotélio Vascular/genética , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/genética , Animais , Peso Corporal , Estrogênios/farmacologia , Feminino , Idade Gestacional , Imuno-Histoquímica , Tamanho do Órgão , Papio anubis , Gravidez , RNA Mensageiro/metabolismo , Solubilidade , Útero/citologia , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/sangue
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa