Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Cell ; 159(5): 1056-1069, 2014 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-25416945

RESUMO

Cdc42 is a highly conserved master regulator of cell polarity. Here, we investigated the mechanism by which yeast cells never re-establish polarity at cortical sites (cytokinesis remnants [CRMs]) that have previously supported Cdc42-mediated growth as a paradigm to mechanistically understand how Cdc42-inhibitory polarity cues are established. We revealed a two-step mechanism of loading the Cdc42 antagonist Nba1 into CRMs to mark these compartments as refractory for a second round of Cdc42 activation. Our data indicate that Nba1 together with a cortically tethered adaptor protein confers memory of previous polarization events to translate this spatial legacy into a biochemical signal that ensures the local singularity of Cdc42 activation. "Memory loss" mutants that repeatedly use the same polarity site over multiple generations display nuclear segregation defects and a shorter lifespan. Our work thus established CRMs as negative polarity cues that prevent Cdc42 reactivation to sustain the fitness of replicating cells.


Assuntos
Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Proteína cdc42 de Saccharomyces cerevisiae de Ligação ao GTP/metabolismo , Divisão Celular Assimétrica , Proteínas de Ciclo Celular/metabolismo , Polaridade Celular , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas de Membrana/metabolismo
2.
EMBO J ; 41(1): e108843, 2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34981518

RESUMO

Primary cilia are antenna-like organelles required for signalling transduction. How cilia structure is mechanistically maintained at steady-state to promote signalling is largely unknown. Here, we define that mammalian primary cilia axonemes are formed by proximal segment (PS) and distal segment (DS) delineated by tubulin polyglutamylation-rich and -poor regions, respectively. The analysis of proximal/distal segmentation indicated that perturbations leading to cilia over-elongation influenced PS or DS length with a different impact on cilia behaviour. We identified septins as novel repressors of DS growth. We show that septins control the localisation of MKS3 and CEP290 required for a functional transition zone (TZ), and the cilia tip accumulation of the microtubule-capping kinesin KIF7, a cilia-growth inhibitor. Live-cell imaging and analysis of sonic-hedgehog (SHH) signalling activation established that DS over-extension increased cilia ectocytosis events and decreased SHH activation. Our data underlines the importance of understanding cilia segmentation for length control and cilia-dependent signalling.


Assuntos
Cílios/metabolismo , Septinas/metabolismo , Animais , Antígenos de Neoplasias/metabolismo , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Proteínas do Citoesqueleto/metabolismo , Proteínas Hedgehog/metabolismo , Humanos , Cinesinas/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Microtúbulos/metabolismo , Epitélio Pigmentado da Retina/citologia , Transdução de Sinais
3.
EMBO Rep ; 20(1)2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30467237

RESUMO

CDC14A codes for a conserved proline-directed phosphatase, and mutations in the gene are associated with autosomal-recessive severe to profound deafness, due to defective kinocilia. A role of CDC14A in cilia formation has also been described in other organisms. However, how human CDC14A impacts on cilia formation remains unclear. Here, we show that human RPE1 hCDC14APD cells, encoding a phosphatase dead version of hCDC14A, have longer cilia than wild-type cells, while hCDC14A overexpression reduces cilia formation. Phospho-proteome analysis of ciliated RPE1 cells identified actin-associated and microtubule binding proteins regulating cilia length as hCDC14A substrates, including the actin-binding protein drebrin. Indeed, we find that hCDC14A counteracts the CDK5-dependent phosphorylation of drebrin at S142 during ciliogenesis. Further, we show that drebrin and hCDC14A regulate the recruitment of the actin organizer Arp2 to centrosomes. In addition, during ciliogenesis hCDC14A also regulates endocytosis and targeting of myosin Va vesicles to the basal body in a drebrin-independent manner, indicating that it impacts primary cilia formation in a multilayered manner.


Assuntos
Proteína 2 Relacionada a Actina/genética , Cílios/genética , Neuropeptídeos/genética , Monoéster Fosfórico Hidrolases/genética , Actinas/genética , Linhagem Celular , Movimento Celular/genética , Centrossomo/metabolismo , Cílios/metabolismo , Quinase 5 Dependente de Ciclina/genética , Endocitose/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Humanos , Microtúbulos/genética , Mutação , Cadeias Pesadas de Miosina/genética , Miosina Tipo V/genética , Fosforilação , Ligação Proteica , Proteínas Tirosina Fosfatases , Proteoma/genética
4.
J Cell Sci ; 131(18)2018 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-30131441

RESUMO

Cilia perform essential signalling functions during development and tissue homeostasis. A key event in ciliogenesis occurs when the distal appendages of the mother centriole form a platform that docks ciliary vesicles and removes CP110-Cep97 inhibitory complexes. Here, we analysed the role of LRRC45 in appendage formation and ciliogenesis. We show that the core appendage proteins Cep83 and SCLT1 recruit LRRC45 to the mother centriole. Once there, LRRC45 recruits the keratin-binding protein FBF1. The association of LRRC45 with the basal body of primary and motile cilia in both differentiated and stem cells reveals a broad function in ciliogenesis. In contrast to the appendage components Cep164 and Cep123, LRRC45 was not essential for either docking of early ciliary vesicles or for removal of CP110. Rather, LRRC45 promotes cilia biogenesis in CP110-uncapped centrioles by organising centriolar satellites, establishing the transition zone and promoting the docking of Rab8 GTPase-positive vesicles. We propose that, instead of acting solely as a platform to recruit early vesicles, centriole appendages form discrete scaffolds of cooperating proteins that execute specific functions that promote the initial steps of ciliogenesis.


Assuntos
Axonema/metabolismo , Proteínas de Transporte/genética , Cílios/metabolismo , Proteínas de Membrana/genética , Proteínas de Transporte/metabolismo , Humanos , Proteínas de Membrana/metabolismo
5.
Dev Biol ; 433(1): 84-93, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29155043

RESUMO

Spermiogenesis is the final phase during sperm cell development in which round spermatids undergo dramatic morphological changes to generate spermatozoa. Here we report that the serine/threonine kinase Stk33 is essential for the differentiation of round spermatids into functional sperm cells and male fertility. Constitutive Stk33 deletion in mice results in severely malformed and immotile spermatozoa that are particularly characterized by disordered structural tail elements. Stk33 expression first appears in primary spermatocytes, and targeted deletion of Stk33 in these cells recapitulates the defects observed in constitutive knockout mice, confirming a germ cell-intrinsic function. Stk33 protein resides in the cytoplasm and partially co-localizes with the caudal end of the manchette, a transient structure that guides tail elongation, in elongating spermatids, and loss of Stk33 leads to the appearance of a tight, straight and elongated manchette. Together, these results identify Stk33 as an essential regulator of spermatid differentiation and male fertility.


Assuntos
Proteínas Serina-Treonina Quinases/metabolismo , Espermátides/enzimologia , Animais , Diferenciação Celular/fisiologia , Fertilidade/fisiologia , Masculino , Camundongos , Camundongos Knockout , Microtúbulos/metabolismo , Proteínas Serina-Treonina Quinases/genética , Espermatócitos/citologia , Espermatócitos/enzimologia , Espermatogênese/fisiologia , Espermatozoides/enzimologia , Testículo/enzimologia
6.
Genes Dev ; 25(8): 875-88, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21498574

RESUMO

Spatial and timely coordination of cytokinesis is crucial for the maintenance of organelle inheritance and genome integrity. The mitotic exit network (MEN) pathway controls both the timely initiation of mitotic exit and cytokinesis in budding yeast. Here we identified the conserved F-BAR protein Hof1 as a substrate of the MEN kinase complex Dbf2-Mob1 during cytokinesis. We show that polo-like kinase Cdc5 first phosphorylates Hof1 to allow subsequent phosphorylation by Dbf2-Mob1. This releases Hof1 from the septin ring and facilitates Hof1 binding to the medial actomyosin ring (AMR), where Hof1 promotes AMR contraction and membrane ingression. Domain structure analysis established that the central, unstructured, region of Hof1, named the ring localization sequence (RLS), is sufficient to mediate Hof1's binding to the medial ring in a cell cycle-dependent manner. Genetic and functional data support a model in which Dbf2-Mob1 regulates Hof1 by inducing domain rearrangements, leading to the exposure of the Hof1 RLS domain during telophase.


Assuntos
Citocinese/fisiologia , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Western Blotting , Ciclo Celular/genética , Ciclo Celular/fisiologia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Citocinese/genética , Imunoprecipitação , Proteínas Associadas aos Microtúbulos/genética , Mitose/genética , Mitose/fisiologia , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosforilação , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
7.
J Cell Sci ; 129(3): 621-36, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26675238

RESUMO

Ciliogenesis initiates at the mother centriole through a series of events that include membrane docking, displacement of cilia-inhibitory proteins and axoneme elongation. Centriolar proteins, in particular at distal and subdistal appendages, carry out these functions. Recently, cytoplasmic complexes named centriolar satellites have also been shown to promote ciliogenesis. Little is known about the functional and molecular relationship between appendage proteins, satellites and cilia biogenesis. Here, we identified the WD-repeat protein 8 (WDR8, also known as WRAP73) as a satellite and centriolar component. We show that WDR8 interacts with the satellite proteins SSX2IP and PCM1 as well as the centriolar proximal end component Cep135. Cep135 is required for the recruitment of WDR8 to centrioles. Depletion experiments revealed that WDR8 and Cep135 have strongly overlapping functions in ciliogenesis. Both are indispensable for ciliary vesicle docking to the mother centriole and for unlocking the distal end of the mother centriole from the ciliary inhibitory complex CP110-Cep97. Our data thus point to an important function of centriolar proximal end proteins in ciliary membrane biogenesis, and establish WDR8 and Cep135 as two factors that are essential for the initial steps of ciliation.


Assuntos
Centríolos/metabolismo , Cílios/metabolismo , Cílios/fisiologia , Morfogênese/fisiologia , Proteínas/metabolismo , Animais , Autoantígenos/metabolismo , Axonema/metabolismo , Axonema/fisiologia , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Centríolos/fisiologia , Células HEK293 , Humanos , Camundongos , Proteínas Associadas aos Microtúbulos/metabolismo , Células NIH 3T3 , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo
8.
Dev Biol ; 409(1): 55-71, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26542012

RESUMO

Midbrain dopaminergic (mDA) neurons modulate various motor and cognitive functions, and their dysfunction or degeneration has been implicated in several psychiatric diseases. Both Sonic Hedgehog (Shh) and Wnt signaling pathways have been shown to be essential for normal development of mDA neurons. Primary cilia are critical for the development of a number of structures in the brain by serving as a hub for essential developmental signaling cascades, but their role in the generation of mDA neurons has not been examined. We analyzed mutant mouse lines deficient in the intraflagellar transport protein IFT88, which is critical for primary cilia function. Conditional inactivation of Ift88 in the midbrain after E9.0 results in progressive loss of primary cilia, a decreased size of the mDA progenitor domain, and a reduction in mDA neurons. We identified Shh signaling as the primary cause of these defects, since conditional inactivation of the Shh signaling pathway after E9.0, through genetic ablation of Gli2 and Gli3 in the midbrain, results in a phenotype basically identical to the one seen in Ift88 conditional mutants. Moreover, the expansion of the mDA progenitor domain observed when Shh signaling is constitutively activated does not occur in absence of Ift88. In contrast, clusters of Shh-responding progenitors are maintained in the ventral midbrain of the hypomorphic Ift88 mouse mutant, cobblestone. Despite the residual Shh signaling, the integrity of the mDA progenitor domain is severely disturbed, and consequently very few mDA neurons are generated in cobblestone mutants. Our results identify for the first time a crucial role of primary cilia in the induction of mDA progenitors, define a narrow time window in which Shh-mediated signaling is dependent upon normal primary cilia function for this purpose, and suggest that later Wnt signaling-dependent events act independently of primary cilia.


Assuntos
Cílios/metabolismo , Neurônios Dopaminérgicos/metabolismo , Embrião de Mamíferos/citologia , Proteínas Hedgehog/metabolismo , Mesencéfalo/citologia , Mesencéfalo/embriologia , Neurogênese , Animais , Cílios/ultraestrutura , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos , Mutação/genética , Proteínas do Tecido Nervoso/metabolismo , Neurogênese/genética , Neuroglia/metabolismo , Fenótipo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/genética , Receptor Smoothened , Células-Tronco/citologia , Células-Tronco/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas Wnt/metabolismo , Proteína Gli2 com Dedos de Zinco , Proteína Gli3 com Dedos de Zinco
9.
PLoS Biol ; 11(2): e1001495, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23468594

RESUMO

The spatiotemporal control of cell polarity is crucial for the development of multicellular organisms and for reliable polarity switches during cell cycle progression in unicellular systems. A tight control of cell polarity is especially important in haploid budding yeast, where the new polarity site (bud site) is established next to the cell division site after cell separation. How cells coordinate the temporal establishment of two adjacent polarity sites remains elusive. Here, we report that the bud neck associated protein Gps1 (GTPase-mediated polarity switch 1) establishes a novel polarity cue that concomitantly sustains Rho1-dependent polarization and inhibits premature Cdc42 activation at the site of cytokinesis. Failure of Gps1 regulation leads to daughter cell death due to rebudding inside the old bud site. Our findings provide unexpected insights into the temporal control of cytokinesis and describe the importance of a Gps1-dependent mechanism for highly accurate polarity switching between two closely connected locations.


Assuntos
Polaridade Celular/fisiologia , Citocinese/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Proteínas rho de Ligação ao GTP/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Divisão Celular/genética , Divisão Celular/fisiologia , Polaridade Celular/genética , Citocinese/genética , Saccharomyces cerevisiae/citologia , Proteínas de Saccharomyces cerevisiae/genética , Proteína cdc42 de Saccharomyces cerevisiae de Ligação ao GTP/genética , Proteína cdc42 de Saccharomyces cerevisiae de Ligação ao GTP/metabolismo , Proteínas rho de Ligação ao GTP/genética
10.
J Cell Sci ; 125(Pt 13): 3091-6, 2012 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-22454527

RESUMO

In Saccharomyces cerevisiae the Cdc14 phosphatase plays a well-established role in reverting phosphorylation events on substrates of the mitotic cyclin-dependent kinase (M-Cdk1), thereby promoting mitotic exit and downregulation of M-Cdk1 activity. Cdc14 localizes at the site of cell cleavage after M-Cdk1 inactivation, suggesting that Cdc14 may perform a crucial, yet ill-defined, role during cytokinesis. Here, we identified Inn1, as a novel direct substrate of both M-Cdk1 and Cdc14. Cdc14 colocalizes with Inn1 at the cell division site and interacts with the C-terminal proline-rich domain of Inn1 that mediates its binding to the SH3-domain-containing proteins Hof1 and Cyk3. We show that phosphorylation of Inn1 by Cdk1 partially perturbs the interaction of Inn1 with Cyk3 thereby reducing the levels of Cyk3 at the cell division site. We propose that Cdc14 counteracts Cdk1 phosphorylation of Inn1 to facilitate Inn1-Cyk3 complex formation and so promote cytokinesis.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Citocinese , Ativação Enzimática , Microscopia de Fluorescência , Mitose , Fosforilação , Domínios Proteicos Ricos em Prolina , Ligação Proteica , Transporte Proteico , Imagem com Lapso de Tempo/métodos , Técnicas do Sistema de Duplo-Híbrido , Domínios de Homologia de src
11.
Mol Syst Biol ; 8: 582, 2012 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-22580890

RESUMO

The orientation of the mitotic spindle with respect to the polarity axis is crucial for the accuracy of asymmetric cell division. In budding yeast, a surveillance mechanism called the spindle position checkpoint (SPOC) prevents exit from mitosis when the mitotic spindle fails to align along the mother-to-daughter polarity axis. SPOC arrest relies upon inhibition of the GTPase Tem1 by the GTPase-activating protein (GAP) complex Bfa1-Bub2. Importantly, reactions signaling mitotic exit take place at yeast centrosomes (named spindle pole bodies, SPBs) and the GAP complex also promotes SPB localization of Tem1. Yet, whether the regulation of Tem1 by Bfa1-Bub2 takes place only at the SPBs remains elusive. Here, we present a quantitative analysis of Bfa1-Bub2 and Tem1 localization at the SPBs. Based on the measured SPB-bound protein levels, we introduce a dynamical model of the SPOC that describes the regulation of Bfa1 and Tem1. Our model suggests that Bfa1 interacts with Tem1 in the cytoplasm as well as at the SPBs to provide efficient Tem1 inhibition.


Assuntos
Regulação Fúngica da Expressão Gênica , Modelos Teóricos , Saccharomyces cerevisiae/genética , Fuso Acromático/metabolismo , Biologia de Sistemas/métodos , Divisão Celular Assimétrica , Ciclo Celular , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Simulação por Computador , Citoplasma/genética , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , GTP Fosfo-Hidrolases/antagonistas & inibidores , GTP Fosfo-Hidrolases/metabolismo , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Microscopia de Fluorescência , Mitose , Proteínas Monoméricas de Ligação ao GTP/antagonistas & inibidores , Proteínas Monoméricas de Ligação ao GTP/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fuso Acromático/genética
12.
Exp Cell Res ; 318(12): 1421-7, 2012 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-22510435

RESUMO

The asymmetrically dividing budding yeast relies upon the alignment of the mitotic spindle along the mother to daughter cell polarity axis for the fidelity of chromosome segregation during mitosis. In the case of spindle misalignment, a surveillance mechanism named the spindle position checkpoint (SPOC) prevents cells from exiting mitosis through the inhibition of the mitotic exit network (MEN). MEN is a signal transduction pathway that mediates mitotic exit through fully activation of the Cdk-counteracting phosphatase Cdc14. In this mini-review, we briefly describe the mechanisms leading to mitotic exit in budding yeast cells focusing on the control of MEN by the SPOC. In addition, we summarize the recent advances in the molecular understanding of SPOC regulation and discuss whether similar checkpoints may exist in higher eukaryotic cells that undergo asymmetric divisions.


Assuntos
Segregação de Cromossomos/genética , Pontos de Checagem da Fase M do Ciclo Celular/fisiologia , Saccharomycetales/genética , Fuso Acromático/metabolismo , Animais , Segregação de Cromossomos/fisiologia , Cromossomos Fúngicos/genética , Cromossomos Fúngicos/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Fatores de Troca do Nucleotídeo Guanina/fisiologia , Humanos , Pontos de Checagem da Fase M do Ciclo Celular/genética , Masculino , Modelos Biológicos , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomycetales/fisiologia , Fuso Acromático/genética , Fuso Acromático/fisiologia
13.
Cells Dev ; 174: 203839, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37062431

RESUMO

Centrosomes are microtubule organizing centers involved in chromosome segregation, spindle orientation, cell motility and cilia formation. In recent years, they have also emerged as key modulators of asymmetric cell division. Centrosomes are composed of two centrioles that initiate duplication in S phase. The conservative nature of centriole duplication means that the two centrioles of a G1 cell are of different ages. They are also structurally different as only the older centriole carries appendages, an assembly of a subset of proteins primarily required for cilia formation. In a growing tissue, the non-motile, primary cilium acts as a mechano- and sensory organelle that influences cell behavior via modulation of signaling pathways. Here, we discuss the most recent findings about distal appendage composition and function, as well as cell cycle-specific regulation and their implications in various diseases.


Assuntos
Centríolos , Centrossomo , Centrossomo/metabolismo , Centríolos/genética , Centríolos/metabolismo , Ciclo Celular , Organelas , Centro Organizador dos Microtúbulos
14.
Mol Biol Cell ; 34(2): ar11, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36542480

RESUMO

Faithful chromosome segregation in budding yeast requires correct positioning of the mitotic spindle along the mother to daughter cell polarity axis. When the anaphase spindle is not correctly positioned, a surveillance mechanism, named as the spindle position checkpoint (SPOC), prevents the progression out of mitosis until correct spindle positioning is achieved. How SPOC works on a molecular level is not well understood. Here we performed a genome-wide genetic screen to search for components required for SPOC. We identified the SWR1 chromatin-remodeling complex (SWR1-C) among several novel factors that are essential for SPOC integrity. Cells lacking SWR1-C were able to activate SPOC upon spindle misorientation but underwent mitotic slippage upon prolonged SPOC arrest. This mitotic slippage required the Cdc14-early anaphase release pathway and other factors including the SAGA (Spt-Ada-Gcn5 acetyltransferase) histone acetyltransferase complex, proteasome components and the mitotic cyclin-dependent kinase inhibitor Sic1. Together, our data establish a novel link between SWR1-C chromatin remodeling and robust checkpoint arrest in late anaphase.


Assuntos
Proteínas de Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Montagem e Desmontagem da Cromatina , Mitose , Pontos de Checagem da Fase M do Ciclo Celular , Fuso Acromático/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Adenosina Trifosfatases/metabolismo
15.
Life Sci Alliance ; 6(7)2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37188479

RESUMO

The NEK1 kinase controls ciliogenesis, mitosis, and DNA repair, and NEK1 mutations cause human diseases including axial spondylometaphyseal dysplasia and amyotrophic lateral sclerosis. C21ORF2 mutations cause a similar pattern of human diseases, suggesting close functional links with NEK1 Here, we report that endogenous NEK1 and C21ORF2 form a tight complex in human cells. A C21ORF2 interaction domain "CID" at the C-terminus of NEK1 is necessary for its association with C21ORF2 in cells, and pathogenic mutations in this region disrupt the complex. AlphaFold modelling predicts an extended binding interface between a leucine-rich repeat domain in C21ORF2 and the NEK1-CID, and our model may explain why pathogenic mutations perturb the complex. We show that NEK1 mutations that inhibit kinase activity or weaken its association with C21ORF2 severely compromise ciliogenesis, and that C21ORF2, like NEK1 is required for homologous recombination. These data enhance our understanding of how the NEK1 kinase is regulated, and they shed light on NEK1-C21ORF2-associated diseases.


Assuntos
Reparo do DNA , Osteocondrodisplasias , Humanos , Mutação/genética , Quinase 1 Relacionada a NIMA/genética , Osteocondrodisplasias/genética , Fosforilação
16.
J Cell Sci ; 123(Pt 11): 1851-61, 2010 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-20442249

RESUMO

The mitotic-exit network (MEN) is a signaling pathway that is essential for the coordination of mitotic exit and cytokinesis. Whereas the role of the MEN in mitotic exit is well established, the molecular mechanisms by which MEN components regulate cytokinesis remain poorly understood. Here, we show that the MEN controls components involved in septum formation, including Inn1, Cyk3 and Chs2. MEN-deficient mutants, forced to exit mitosis as a result of Cdk1 inactivation, show defects in targeting Cyk3 and Inn1 to the bud-neck region. In addition, we found that the chitin synthase Chs2 did not efficiently localize at the bud neck in the absence of MEN activity. Ultrastructural analysis of the bud neck revealed that low MEN activity led to unilateral, uncoordinated extension of the primary and secondary septa. This defect was partially suppressed by increased levels of Cyk3. We therefore propose that the MEN directly controls cytokinesis via targeting of Inn1, Cyk3 and Chs2 to the bud neck.


Assuntos
Proteína Quinase CDC2/metabolismo , Proteínas de Ciclo Celular/metabolismo , Quitina Sintase/metabolismo , Proteínas Associadas aos Microtúbulos/deficiência , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomycetales/fisiologia , Proteína Quinase CDC2/genética , Clonagem Molecular , Citocinese/genética , Microscopia de Fluorescência , Mitose/genética , Mutagênese Sítio-Dirigida , Cadeias Pesadas de Miosina/deficiência , Deleção de Sequência/genética , Transdução de Sinais/genética
17.
J Cell Biol ; 179(3): 423-36, 2007 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-17967947

RESUMO

The spindle orientation checkpoint (SPOC) of budding yeast delays mitotic exit when cytoplasmic microtubules (MTs) are defective, causing the spindle to become misaligned. Delay is achieved by maintaining the activity of the Bfa1-Bub2 guanosine triphosphatase-activating protein complex, an inhibitor of mitotic exit. In this study, we show that the spindle pole body (SPB) component Spc72, a transforming acidic coiled coil-like molecule that interacts with the gamma-tubulin complex, recruits Kin4 kinase to both SPBs when cytoplasmic MTs are defective. This allows Kin4 to phosphorylate the SPB-associated Bfa1, rendering it resistant to inactivation by Cdc5 polo kinase. Consistently, forced targeting of Kin4 to both SPBs delays mitotic exit even when the anaphase spindle is correctly aligned. Moreover, we present evidence that Spc72 has an additional function in SPOC regulation that is independent of the recruitment of Kin4. Thus, Spc72 provides a missing link between cytoplasmic MT function and components of the SPOC.


Assuntos
Anáfase , Centrossomo/ultraestrutura , Saccharomyces cerevisiae/fisiologia , Sequência de Aminoácidos , Ciclo Celular , Membrana Celular/metabolismo , Proteínas do Citoesqueleto/metabolismo , Proteínas Fúngicas , Proteínas Associadas aos Microtúbulos/metabolismo , Modelos Biológicos , Dados de Sequência Molecular , Fosforilação , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Fuso Acromático
18.
Cells ; 11(9)2022 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-35563825

RESUMO

The mitotic exit network (MEN) is a conserved signalling pathway essential for the termination of mitosis in the budding yeast Saccharomyces cerevisiae. All MEN components are highly conserved in the methylotrophic budding yeast Ogataea polymorpha, except for Cdc15 kinase. Instead, we identified two essential kinases OpHcd1 and OpHcd2 (homologue candidate of ScCdc15) that are homologous to SpSid1 and SpCdc7, respectively, components of the septation initiation network (SIN) of the fission yeast Schizosaccharomyces pombe. Conditional mutants for OpHCD1 and OpHCD2 exhibited significant delay in late anaphase and defective cell separation, suggesting that both genes have roles in mitotic exit and cytokinesis. Unlike Cdc15 in S. cerevisiae, the association of OpHcd1 and OpHcd2 with the yeast centrosomes (named spindle pole bodies, SPBs) is restricted to the SPB in the mother cell body. SPB localisation of OpHcd2 is regulated by the status of OpTem1 GTPase, while OpHcd1 requires the polo-like kinase OpCdc5 as well as active Tem1 to ensure the coordination of mitotic exit (ME) signalling and cell cycle progression. Our study suggests that the divergence of molecular mechanisms to control the ME-signalling pathway as well as the loss of Sid1/Hcd1 kinase in the MEN occurred relatively recently during the evolution of budding yeast.


Assuntos
Proteínas Monoméricas de Ligação ao GTP , Proteínas de Saccharomyces cerevisiae , Saccharomycetales , Schizosaccharomyces , Humanos , Mitose , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomycetales/genética , Saccharomycetales/metabolismo , Schizosaccharomyces/metabolismo , Corpos Polares do Fuso/metabolismo
19.
Open Biol ; 12(11): 220203, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36321416

RESUMO

The spindle position checkpoint (SPOC) is a mitotic surveillance mechanism in Saccharomyces cerevisiae that prevents cells from completing mitosis in response to spindle misalignment, thereby contributing to genomic integrity. The kinase Kin4, one of the most downstream SPOC components, is essential to stop the mitotic exit network (MEN), a signalling pathway that promotes the exit from mitosis and cell division. Previous work, however, suggested that a Kin4-independent pathway contributes to SPOC, yet the underlying mechanisms remain elusive. Here, we established the glycogen-synthase-kinase-3 (GSK-3) homologue Mck1, as a novel component that works independently of Kin4 to engage SPOC. Our data indicate that both Kin4 and Mck1 work in parallel to counteract MEN activation by the Cdc14 early anaphase release (FEAR) network. We show that Mck1's function in SPOC is mediated by the pre-replication complex protein and mitotic cyclin-dependent kinase (M-Cdk) inhibitor, Cdc6, which is degraded in a Mck1-dependent manner prior to mitosis. Moderate overproduction of Cdc6 phenocopies MCK1 deletion and causes SPOC deficiency via its N-terminal, M-Cdk inhibitory domain. Our data uncover an unprecedented role of GSK-3 kinases in coordinating spindle orientation with cell cycle progression.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomycetales , Humanos , Proteínas de Saccharomyces cerevisiae/genética , Quinase 3 da Glicogênio Sintase/genética , Quinase 3 da Glicogênio Sintase/metabolismo , Fuso Acromático/metabolismo , Saccharomycetales/metabolismo , Proteínas Serina-Treonina Quinases , Fosforilação , Saccharomyces cerevisiae/genética , Mitose , Proteínas de Ciclo Celular/metabolismo , Proteínas Tirosina Fosfatases/genética , Proteínas Tirosina Fosfatases/metabolismo
20.
J Cell Biol ; 221(12)2022 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-36315013

RESUMO

The centriole is the microtubule-based backbone that ensures integrity, function, and cell cycle-dependent duplication of centrosomes. Mostly unclear mechanisms control structural integrity of centrioles. Here, we show that the centrosome protein CEP350 functions as scaffold that coordinates distal-end properties of centrioles such as length, stability, and formation of distal and subdistal appendages. CEP350 fulfills these diverse functions by ensuring centriolar localization of WDR90, recruiting the proteins CEP78 and OFD1 to the distal end of centrioles and promoting the assembly of subdistal appendages that have a role in removing the daughter-specific protein Centrobin. The CEP350-FOP complex in association with CEP78 or OFD1 controls centriole microtubule length. Centrobin safeguards centriole distal end stability, especially in the compromised CEP350-/- cells, while the CEP350-FOP-WDR90 axis secures centriole integrity. This study identifies CEP350 as a guardian of the distal-end region of centrioles without having an impact on the proximal PCM part.


Assuntos
Proteínas de Ciclo Celular , Centríolos , Proteínas Associadas aos Microtúbulos , Proteínas Nucleares , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Centríolos/metabolismo , Centrossomo/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/genética , Microtúbulos/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa