Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Mar Drugs ; 22(4)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38667785

RESUMO

Diabetes mellitus is a chronic metabolic condition marked by high blood glucose levels caused by inadequate insulin synthesis or poor insulin use. This condition affects millions of individuals worldwide and is linked to a variety of consequences, including cardiovascular disease, neuropathy, nephropathy, and retinopathy. Diabetes therapy now focuses on controlling blood glucose levels through lifestyle changes, oral medicines, and insulin injections. However, these therapies have limits and may not successfully prevent or treat diabetic problems. Several marine-derived chemicals have previously demonstrated promising findings as possible antidiabetic medicines in preclinical investigations. Peptides, polyphenols, and polysaccharides extracted from seaweeds, sponges, and other marine species are among them. As a result, marine natural products have the potential to be a rich source of innovative multitargeted medications for diabetes prevention and treatment, as well as associated complications. Future research should focus on the chemical variety of marine creatures as well as the mechanisms of action of marine-derived chemicals in order to find new antidiabetic medicines and maximize their therapeutic potential. Based on preclinical investigations, this review focuses on the next step for seaweed applications as potential multitargeted medicines for diabetes, highlighting the bioactivities of seaweeds in the prevention and treatment of this illness.


Assuntos
Diabetes Mellitus , Suplementos Nutricionais , Hipoglicemiantes , Alga Marinha , Alga Marinha/química , Humanos , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Diabetes Mellitus/tratamento farmacológico , Animais , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Organismos Aquáticos
2.
Int J Mol Sci ; 25(2)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38255871

RESUMO

Seaweed, a miscellaneous group of marine algae, has long been recognized for its rich nutritional composition and bioactive compounds, being considered nutraceutical ingredient. This revision delves into the promising role of seaweed-derived nutrients as a beneficial resource for drug discovery and innovative product development. Seaweeds are abundant sources of essential vitamins, minerals, polysaccharides, polyphenols, and unique secondary metabolites, which reveal a wide range of biological activities. These bioactive compounds possess potential therapeutic properties, making them intriguing candidates for drug leads in various medical applications and pharmaceutical drug development. It explores their pharmacological properties, including antioxidant, anti-inflammatory, antimicrobial, and anticancer activities, shedding light on their potential as therapeutic agents. Moreover, the manuscript provides insights into the development of formulation strategies and delivery systems to enhance the bioavailability and stability of seaweed-derived compounds. The manuscript also discusses the challenges and opportunities associated with the integration of seaweed-based nutrients into the pharmaceutical and nutraceutical industries. Regulatory considerations, sustainability, and scalability of sustainable seaweed sourcing and cultivation methods are addressed, emphasizing the need for a holistic approach in harnessing seaweed's potential. This revision underscores the immense potential of seaweed-derived compounds as a valuable reservoir for drug leads and product development. By bridging the gap between marine biology, pharmacology, and product formulation, this research contributes to the critical advancement of sustainable and innovative solutions in the pharmaceutical and nutraceutical sectors.


Assuntos
Medicina , Desenvolvimento de Medicamentos , Vitaminas , Veículos Farmacêuticos , Oceanos e Mares
3.
Mar Drugs ; 21(6)2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37367648

RESUMO

Polyphenols are compounds found in various plants and foods, known for their antioxidant and anti-inflammatory properties. Recently, researchers have been exploring the therapeutic potential of marine polyphenols and other minor nutrients that are found in algae, fish and crustaceans. These compounds have unique chemical structures and exhibit diverse biological properties, including anti-inflammatory, antioxidant, antimicrobial and antitumor action. Due to these properties, marine polyphenols are being investigated as possible therapeutic agents for the treatment of a wide variety of conditions, such as cardiovascular disease, diabetes, neurodegenerative diseases and cancer. This review focuses on the therapeutic potential of marine polyphenols and their applications in human health, and also, in marine phenolic classes, the extraction methods, purification techniques and future applications of marine phenolic compounds.


Assuntos
Antioxidantes , Polifenóis , Animais , Humanos , Polifenóis/farmacologia , Polifenóis/uso terapêutico , Polifenóis/química , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Antioxidantes/química , Micronutrientes/farmacologia , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/química , Extratos Vegetais/química , Plantas
4.
Mar Drugs ; 21(7)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37504916

RESUMO

Marine macroalgae, such as Padina boergesenii, are gaining recognition in the cosmetics industry as valuable sources of natural bioactive compounds. This study aimed to investigate the biochemical profile of P. boergesenii and evaluate its potential as a cosmetic ingredient. Fourier-transform infrared (FTIR), gas chromatography-mass spectrometry (GCMS), and high-resolution liquid chromatography-mass spectrometry quadrupole time-of-flight (HRLCMS QTOF) analyses were employed to assess the functional groups, phycocompounds, and beneficial compounds present in P. boergesenii. Pigment estimation, total phenol and protein content determination, DPPH antioxidant analysis, and tyrosinase inhibition assay were conducted to evaluate the extracts' ability to counteract oxidative stress and address hyperpigmentation concerns. Elemental composition and amino acid quantification were determined using inductively coupled plasma atomic emission spectrometry (ICP-AES) and HRLCMS, respectively. FTIR spectroscopy confirmed diverse functional groups, including halo compounds, alcohols, esters, amines, and acids. GCMS analysis identified moisturizing, conditioning, and anti-aging compounds such as long-chain fatty alcohols, fatty esters, fatty acids, and hydrocarbon derivatives. HRLCMS QTOF analysis revealed phenolic compounds, fatty acid derivatives, peptides, terpenoids, and amino acids with antioxidant, anti-inflammatory, and skin-nourishing properties. Elemental analysis indicated varying concentrations of elements, with silicon (Si) being the most abundant and copper (Cu) being the least abundant. The total phenol content was 86.50 µg/mL, suggesting the presence of antioxidants. The total protein content was 113.72 µg/mL, indicating nourishing and rejuvenating effects. The ethanolic extract exhibited an IC50 value of 36.75 µg/mL in the DPPH assay, indicating significant antioxidant activity. The methanolic extract showed an IC50 value of 42.784 µg/mL. Furthermore, P. boergesenii extracts demonstrated 62.14% inhibition of tyrosinase activity. This comprehensive analysis underscores the potential of P. boergesenii as an effective cosmetic ingredient for enhancing skin health. Given the increasing use of seaweed-based bioactive components in cosmetics, further exploration of P. boergesenii's potential in the cosmetics industry is warranted to leverage its valuable properties.


Assuntos
Cosméticos , Phaeophyceae , Alga Marinha , Antioxidantes/farmacologia , Antioxidantes/análise , Extratos Vegetais/farmacologia , Monofenol Mono-Oxigenase , Cromatografia Gasosa-Espectrometria de Massas , Compostos Fitoquímicos/farmacologia , Phaeophyceae/química , Fenóis/farmacologia , Alga Marinha/química , Cosméticos/farmacologia
5.
Mar Drugs ; 21(11)2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37999402

RESUMO

Diseases such as obesity; cardiovascular diseases such as high blood pressure, myocardial infarction and stroke; digestive diseases such as celiac disease; certain types of cancer and osteoporosis are related to food. On the other hand, as the world's population increases, the ability of the current food production system to produce food consistently is at risk. As a result, intensive agriculture has contributed to climate change and a major environmental impact. Research is, therefore, needed to find new sustainable food sources. One of the most promising sources of sustainable food raw materials is macroalgae. Algae are crucial to solving this nutritional deficiency because they are abundant in bioactive substances that have been shown to combat diseases such as hyperglycemia, diabetes, obesity, metabolic disorders, neurodegenerative diseases and cardiovascular diseases. Examples of these substances include polysaccharides such as alginate, fucoidan, agar and carrageenan; proteins such as phycobiliproteins; carotenoids such as ß-carotene and fucoxanthin; phenolic compounds; vitamins and minerals. Seaweed is already considered a nutraceutical food since it has higher protein values than legumes and soy and is, therefore, becoming increasingly common. On the other hand, compounds such as polysaccharides extracted from seaweed are already used in the food industry as thickening agents and stabilizers to improve the quality of the final product and to extend its shelf life; they have also demonstrated antidiabetic effects. Among the other bioactive compounds present in macroalgae, phenolic compounds, pigments, carotenoids and fatty acids stand out due to their different bioactive properties, such as antidiabetics, antimicrobials and antioxidants, which are important in the treatment or control of diseases such as diabetes, cholesterol, hyperglycemia and cardiovascular diseases. That said, there have already been some studies in which macroalgae (red, green and brown) have been incorporated into certain foods, but studies on gluten-free products are still scarce, as only the potential use of macroalgae for this type of product is considered. Considering the aforementioned issues, this review aims to analyze how macroalgae can be incorporated into foods or used as a food supplement, as well as to describe the bioactive compounds they contain, which have beneficial properties for human health. In this way, the potential of macroalgae-based products in eminent diseases, such as celiac disease, or in more common diseases, such as diabetes and cholesterol complications, can be seen.


Assuntos
Doenças Cardiovasculares , Doença Celíaca , Diabetes Mellitus , Hiperglicemia , Alga Marinha , Humanos , Polissacarídeos/metabolismo , Suplementos Nutricionais , Alga Marinha/metabolismo , Proteínas/metabolismo , Carotenoides/metabolismo , Fenóis/análise , Obesidade , Atenção à Saúde , Colesterol/metabolismo
6.
Mar Drugs ; 21(3)2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36976209

RESUMO

This research evaluated the antifungal effectiveness of Arthrospira platensis ethanol, methanol, ethyl acetate and acetone extracts against the tested pathogenic fungi (Candida albicans, Trichophyton rubrum and Malassezia furfur). Antioxidant and cytotoxicity effectiveness of A. platensis extracts against four distinct cell lines were also assessed. Methanol extract of A. platensis exhibited the highest inhibition zones against Candida albicans as measured by the well diffusion method. A transmission electron micrograph of the treated group of Candida cells with A. platensis methanolic extract showed mild lysis and vacuolation of the cytoplasmic organelles. In vivo, after induced infection of mice by C. albicans and treatment with A. platensis methanolic extract cream, the skin layer emerged with the removal of Candida spherical plastopores. The extract of A. platensis recorded the highest antioxidant activity using the DPPH (2, 2- diphenyl-1-picrylhydrazyl) scavenging method (IC50 28 mg/mL). A cytotoxicity test using a MTT assay showed that the A. platensis extract had strong cytotoxic activity against the HepG2 cell line (IC50 20.56 ± 1.7 µg/mL) and moderate cytotoxic activity against MCF7 and the Hela cell (IC50 27.99 ± 2.1 µg/mL). Gas Chromatography/Mass Spectroscopy (GC/MS) results revealed that the effective activity of A. platensis extract could be linked to a synergistic impact between their prominent composition as alkaloids, phytol, fatty acids hydrocarbons, phenolics and phthalates. A. platensis extract contains active metabolites that constitute a promising source of antifungal, antioxidant and anti-proliferative compounds for the pharmaceutical drug industry.


Assuntos
Antifúngicos , Dermatopatias , Humanos , Animais , Camundongos , Antifúngicos/farmacologia , Antifúngicos/química , Antioxidantes/farmacologia , Antioxidantes/química , Metanol , Células HeLa , Extratos Vegetais/farmacologia , Candida albicans , Candida
7.
Mar Drugs ; 20(6)2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35736190

RESUMO

In recent years, an increased interest in marine macroalgae bioactive compounds has been recorded due to their benefits to human health and welfare. Several of their bioactivities have been demonstrated, such as anti-inflammatory, antioxidant, anticarcinogenic, antibacterial and antiviral behavior. However, there still lacks a clear definition regarding how these compounds exert their bioactive properties. Of all the bioactive compounds derived from marine macroalgae, attention has been focused on phenolic compounds, specifically in phlorotannins, due to their potential for biomedical applications. Phlorotannins are a diverse and wide group of phenolic compounds, with several structural variations based on the monomer phloroglucinol. Among the diverse phlorotannin structures, the eckol-family of phlorotannins demonstrates remarkable bioactivity, notably their anti-tumoral properties. However, the molecular mechanisms by which this activity is achieved remain elusive and sparse. This review focuses on the described molecular mechanisms of anti-tumoral effects by the eckol family of compounds and the future prospects of these molecules for potential application in oncology therapies.


Assuntos
Neoplasias , Phaeophyceae , Alga Marinha , Antioxidantes/química , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Humanos , Neoplasias/tratamento farmacológico , Phaeophyceae/química , Fenóis , Floroglucinol/química , Alga Marinha/química , Taninos/química
8.
Mar Drugs ; 20(12)2022 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-36547932

RESUMO

With respect to the potential natural resources in the marine environment, marine macroalgae or seaweeds are recognized to have health impacts. Two marine algae that are found in the Red Sea, Codium tomentosum (Green algae) and Actinotrichia fragilis (Red algae), were collected. Antibacterial and antioxidant activities of aqueous extracts of these algae were evaluated in vitro. Polyphenols from the extracts were determined using HPLC. Fillet fish was fortified with these algal extracts in an attempt to improve its nutritional value, and sensory evaluation was performed. The antibacterial effect of C. tomentosum extract was found to be superior to that of A. fragilis extract. Total phenolic contents of C. tomentosum and A. fragilis aqueous extract were 32.28 ± 1.63 mg/g and 19.96 ± 1.28 mg/g, respectively, while total flavonoid contents were 4.54 ± 1.48 mg/g and 3.86 ± 1.02 mg/g, respectively. Extract of C. tomentosum demonstrates the highest antioxidant activity, with an IC50 value of 75.32 ± 0.07 µg/mL. The IC50 of L-ascorbic acid as a positive control was 22.71 ± 0.03 µg/mL. The IC50 values for inhibiting proliferation on normal PBMC cells were 33.7 ± 1.02 µg/mL and 51.0 ± 1.14 µg/mL for C. tomentosum and A. fragilis, respectively. The results indicated that both algal aqueous extracts were safe, with low toxicity to normal cells. Interestingly, fillet fish fortified with C. tomentosum extract demonstrated the greatest overall acceptance score. These findings highlight the potential of these seaweed species for cultivation as a sustainable and safe source of therapeutic compounds for treating human and fish diseases, as well as effective food supplements and preservatives instead of chemical ones after performing in vivo assays.


Assuntos
Clorófitas , Rodófitas , Alga Marinha , Animais , Humanos , Antioxidantes/farmacologia , Leucócitos Mononucleares , Clorófitas/química , Alga Marinha/química , Rodófitas/química , Aditivos Alimentares , Suplementos Nutricionais , Antibacterianos/farmacologia , Extratos Vegetais/farmacologia
9.
Mar Drugs ; 19(3)2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33652930

RESUMO

Edible marine algae are rich in bioactive compounds and are, therefore, a source of bioavailable proteins, long chain polysaccharides that behave as low-calorie soluble fibers, metabolically necessary minerals, vitamins, polyunsaturated fatty acids, and antioxidants. Marine algae were used primarily as gelling agents and thickeners (phycocolloids) in food and pharmaceutical industries in the last century, but recent research has revealed their potential as a source of useful compounds for the pharmaceutical, medical, and cosmetic industries. The green, red, and brown algae have been shown to have useful therapeutic properties in the prevention and treatment of neurodegenerative diseases: Parkinson, Alzheimer's, and Multiple Sclerosis, and other chronic diseases. In this review are listed and described the main components of a suitable diet for patients with these diseases. In addition, compounds derived from macroalgae and their neurophysiological activities are described.


Assuntos
Dieta , Doenças Neurodegenerativas/dietoterapia , Alga Marinha/química , Animais , Humanos , Doenças Neurodegenerativas/fisiopatologia , Doenças Neurodegenerativas/prevenção & controle
10.
Mar Drugs ; 19(10)2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34677469

RESUMO

Presently, there is a high demand for nutritionally enhanced foods, so it is a current challenge to look at new raw food sources that can supplement beneficially the human diet. The nutritional profile and key secondary metabolites of red seaweeds (Rhodophyta) are gaining interest because of this challenge. In this context, the possible use of the red seaweed Chondracanthus teedei var. lusitanicus (Gigartinales) as a novel nutraceutical source was investigated. As a result, we highlight the high mineral content of this seaweed, representing 29.35 g 100 g-1 of its dry weight (DW). Despite the low levels of calcium and phosphorus (0.26 and 0.20 g 100 g-1 DW, respectively), this seaweed is an interesting source of nitrogen and potassium (2.13 and 2.29 g-1 DW, accordingly). Furthermore, the high content of carbohydrates (56.03 g 100 g-1 DW), which acts as dietary fibers, confers a low caloric content of this raw food source. Thus, this study demonstrates that C. teedei var. lusitanicus is in fact an unexploited potential resource with the capability to provide key minerals to the human diet with promising nutraceutical properties.


Assuntos
Suplementos Nutricionais , Alga Marinha , Animais , Organismos Aquáticos
11.
Mar Drugs ; 19(3)2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33808736

RESUMO

To exploit the nutraceutical and biomedical potential of selected seaweed-derived polymers in an economically viable way, it is necessary to analyze and understand their quality and yield fluctuations throughout the seasons. In this study, the seasonal polysaccharide yield and respective quality were evaluated in three selected seaweeds, namely the agarophyte Gracilaria gracilis, the carrageenophyte Calliblepharis jubata (both red seaweeds) and the alginophyte Sargassum muticum (brown seaweed). It was found that the agar synthesis of G. gracilis did not significantly differ with the seasons (27.04% seaweed dry weight (DW)). In contrast, the carrageenan content in C. jubata varied seasonally, being synthesized in higher concentrations during the summer (18.73% DW). Meanwhile, the alginate synthesis of S. muticum exhibited a higher concentration (36.88% DW) during the winter. Therefore, there is a need to assess the threshold at which seaweed-derived polymers may have positive effects or negative impacts on human nutrition. Furthermore, this study highlights the three polymers, along with their known thresholds, at which they can have positive and/or negative health impacts. Such knowledge is key to recognizing the paradigm governing their successful deployment and related beneficial applications in humans.


Assuntos
Ágar/metabolismo , Alginatos/metabolismo , Carragenina/biossíntese , Gracilaria/metabolismo , Sargassum/metabolismo , Estações do Ano , Alga Marinha/metabolismo , Ágar/efeitos adversos , Alginatos/efeitos adversos , Carragenina/efeitos adversos , Gracilaria/crescimento & desenvolvimento , Humanos , Valor Nutritivo , Medição de Risco , Sargassum/crescimento & desenvolvimento , Alga Marinha/crescimento & desenvolvimento
12.
Mar Drugs ; 19(5)2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33926129

RESUMO

Seaweeds are a potential source of bioactive compounds that are useful for biotechnological applications and can be employed in different industrial areas in order to replace synthetic compounds with components of natural origin. Diverse studies demonstrate that there is a solid ground for the exploitation of seaweed bioactive compounds in order to prevent illness and to ensure a better and healthier lifestyle. Among the bioactive algal molecules, phenolic compounds are produced as secondary metabolites with beneficial effects on plants, and also on human beings and animals, due to their inherent bioactive properties, which exert antioxidant, antiviral, and antimicrobial activities. The use of phenolic compounds in pharmaceutical, nutraceutical, cosmetics, and food industries may provide outcomes that could enhance human health. Through the production of healthy foods and natural drugs, bioactive compounds from seaweeds can help with the treatment of human diseases. This review aims to highlight the importance of phenolic compounds from seaweeds, the scope of their production in nature and the impact that these compounds can have on human and animal health through nutraceutical and pharmaceutical products.


Assuntos
Suplementos Nutricionais , Ecossistema , Fenóis/metabolismo , Fenóis/farmacologia , Alga Marinha/metabolismo , Animais , Humanos , Valor Nutritivo , Fenóis/isolamento & purificação , Metabolismo Secundário
13.
Mar Drugs ; 18(1)2020 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-31963775

RESUMO

From the origin of our planet, about 4 [...].


Assuntos
Fatores Biológicos/farmacologia , Phaeophyceae/química , Animais , Alimentos , Humanos , Fotossíntese/fisiologia
14.
Mar Drugs ; 18(11)2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-33207613

RESUMO

The introduction of exotic organisms in marine ecosystems can lead to economic and ecological losses. Globally, seaweeds represent a significant part of these non-indigenous species (NIS), with 407 introduced algal species. Furthermore, the presence of NIS seaweeds has been reported as a major concern worldwide since the patterns of their potential invasion mechanisms and vectors are not yet fully understood. Currently, in the Iberian Peninsula, around 50 NIS seaweeds have been recorded. Some of these are also considered invasive due to their overgrowth characteristic and competition with other species. However, invasive seaweeds are suitable for industrial applications due to their high feedstock. Hence, seaweeds' historical use in daily food diet, allied to research findings, showed that macroalgae are a source of nutrients and bioactive compounds with nutraceutical properties. The main goal of this review is to evaluate the records of NIS seaweeds in the Iberian Peninsula and critically analyze the potential of invasive seaweeds application in the food industry.


Assuntos
Manipulação de Alimentos , Abastecimento de Alimentos , Valor Nutritivo , Alga Marinha/crescimento & desenvolvimento , Indústria de Processamento de Alimentos , Humanos
15.
Mar Drugs ; 18(1)2020 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-31940929

RESUMO

Gigartina pistillata is a red seaweed common in Figueira da Foz, Portugal. Here, the antitumour potential of G. pistillata carrageenan, with a known variable of the life cycle, the female gametophyte (FG) and tetrasporophyte (T) was evaluated against colorectal cancer stem cell (CSC) -enriched tumourspheres. FTIR-ATR analysis of G. pistillata carrageenan extracts indicated differences between life cycle phases, being FG a κ/ι hybrid carrageenan and T a ʎ/ξ hybrid. Both carrageenan extracts presented IC50 values inferior to 1 µg/mL in HT29-derived CSC-enriched tumourspheres, as well as reduced tumoursphere area. The two extracts were also effective at reducing cellular viability in SW620- and SW480-derived tumourspheres. These results indicate that carrageenans extracted from two G. pistillata life cycle phases have antitumour potential against colorectal cancer stem-like cells, specially the T carrageenan.


Assuntos
Antineoplásicos/farmacologia , Produtos Biológicos/farmacologia , Carragenina/farmacologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Rodófitas/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Humanos , Concentração Inibidora 50 , Alga Marinha/química
16.
Mar Drugs ; 18(8)2020 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-32722220

RESUMO

Seaweeds have attracted high interest in recent years due to their chemical and bioactive properties to find new molecules with valuable applications for humankind. Phenolic compounds are the group of metabolites with the most structural variation and the highest content in seaweeds. The most researched seaweed polyphenol class is the phlorotannins, which are specifically synthesized by brown seaweeds, but there are other polyphenolic compounds, such as bromophenols, flavonoids, phenolic terpenoids, and mycosporine-like amino acids. The compounds already discovered and characterized demonstrate a full range of bioactivities and potential future applications in various industrial sectors. This review focuses on the extraction, purification, and future applications of seaweed phenolic compounds based on the bioactive properties described in the literature. It also intends to provide a comprehensive insight into the phenolic compounds in seaweed.


Assuntos
Fenóis/isolamento & purificação , Fenóis/farmacologia , Alga Marinha/metabolismo , Animais , Humanos , Estrutura Molecular , Fenóis/química , Relação Estrutura-Atividade
17.
Mar Drugs ; 18(1)2019 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-31878264

RESUMO

The aim of this paper is to review the multiplicity of the current uses of marine macroalgae. Seaweeds are already used in many products and for different purposes, from food products to medicine. They are a natural resource that can provide a number of compounds with beneficial bioactivities like antioxidant, anti-inflammatory, anti-aging effects, among others. Despite studies directed in prospecting for their properties and the commodities already marketed, they could, surely, be even more researched and sustainably explored.


Assuntos
Produtos Biológicos/química , Produtos Biológicos/economia , Alga Marinha , Anti-Inflamatórios , Antioxidantes
18.
Mar Drugs ; 18(1)2019 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-31878353

RESUMO

Changes in lipid profile constitute the main risk factor for cardiovascular diseases. Algae extracted carrageenans are long-chain polysaccharides and their ability to form gels provides for the formation of vegetable jelly. The objective was to evaluate the bioactive potential of carrageenan (E407) in the lipid profile, after ingestion of jelly. A total of 30 volunteers of both sexes, aged 20-64 years and with total cholesterol (TC) values ≥200 mg/dL, who ingested 100 mL/day of jelly for 60 days, were studied. All had two venous blood collections: before starting the jelly intake and after 60 days. At both times, TC, high density lipoprotein cholesterol (HDL-C), low density lipoprotein cholesterol (LDL-C) and triglycerides (TG), were evaluated using commercial kits and spectrophotometer. The statistics were performed using the SPSS 25.0 software and p < 0.05 were considered statistically significant. Serum values after 60 days of jelly intake revealed a statistically significant decrease in TC levels (5.3%; p = 0.001) and LDL-C concentration (5.4%; p = 0.048) in females. The daily intake of vegetable jelly for 60 days showed a reduction in serum TC and LDL-C levels in women, allowing us to conclude that carrageenan has bioactive potential in reducing TC concentration.


Assuntos
Carragenina/farmacologia , Hipercolesterolemia/tratamento farmacológico , Metabolismo dos Lipídeos/efeitos dos fármacos , Carragenina/química , Carragenina/uso terapêutico , Feminino , Humanos , Lipídeos , Masculino , Pessoa de Meia-Idade , Verduras/química , Adulto Jovem
19.
Mar Drugs ; 17(4)2019 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-30987249

RESUMO

Seaweeds, which have been widely used for human consumption, are considered a potential source of biological compounds, where enzyme-assisted extraction can be an efficient method to obtain multifunctional extracts. Chemical characterization of Sargassum muticum and Osmundea pinnatifida extracts obtained by Alcalase and Viscozyme assisted extraction, respectively, showed an increment of macro/micro elements in comparison to the corresponding dry seaweeds, while the ratio of Na/K decreased in both extracts. Galactose, mannose, xylose, fucose, and glucuronic acid were the main monosaccharides (3.2-27.3 mg/glyophilized extract) present in variable molar ratios, whereas low free amino acids content and diversity (1.4-2.7 g/100gprotein) characterized both extracts. FTIR-ATR and 1H NMR spectra confirmed the presence of important polysaccharide structures in the extracts, namely fucoidans from S. muticum or agarans as sulfated polysaccharides from O. pinnatifida. No cytotoxicity against normal mammalian cells was observed from 0 to 4 mglyophilized extract/mL for both extracts. The comprehensive characterization of the composition and safety of these two extracts fulfils an important step towards their authorized application for nutritional and/or nutraceutical purposes.


Assuntos
Suplementos Nutricionais , Extratos Vegetais/química , Rodófitas/química , Sargassum/química , Alga Marinha/química , Animais , Linhagem Celular , Fibroblastos , Camundongos , Estrutura Molecular , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/toxicidade , Polissacarídeos/química , Polissacarídeos/isolamento & purificação , Polissacarídeos/toxicidade , Espectroscopia de Prótons por Ressonância Magnética , Espectroscopia de Infravermelho com Transformada de Fourier , Subtilisinas/metabolismo , Testes de Toxicidade
20.
FEMS Yeast Res ; 15(5): fov043, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26071437

RESUMO

Candida parapsilosis is nowadays an emerging opportunistic pathogen and its increasing incidence is part related to the capacity to produce biofilm. In addition, one of the most important C. parapsilosis pathogenic risk factors includes the organisms' selective growth capabilities in hyperalimentation solutions. Thus, in this study, we investigated the role of glucose in C. parapsilosis biofilm modulation, by studying biofilm formation, matrix composition, and structure. Moreover, the expression of biofilm-related genes (BCR1, FKS1 and OLE1) was analysed in the presence of different glucose percentages. The results demonstrated the importance of glucose in the modulation of C. parapsilosis biofilm. The concentration of glucose had direct implications on the C. parapsilosis transition of yeast cells to pseudohyphae. Additionally, it was demonstrated that biofilm-related genes BCR1, FKS1, and OLE1 are involved in biofilm modulation as a result of glucose. The mechanism by which glucose enhances biofilm formation is not fully understood; however, with this study we were able to demonstrate that C. parapsilosis responds to stress conditions caused by elevated levels of glucose by upregulating genes related to biofilm formation (BCR1, FKS1 and OLE1).


Assuntos
Biofilmes/crescimento & desenvolvimento , Candida/genética , Candida/metabolismo , Glucose/metabolismo , Proteínas Fúngicas/genética , Perfilação da Expressão Gênica , Glucosiltransferases/genética , Estearoil-CoA Dessaturase/genética , Fatores de Virulência/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa