Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Microb Pathog ; 158: 104975, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34022358

RESUMO

In early December 2019, an outbreak of coronavirus disease 2019 caused by a new strain of coronavirus (SARS-CoV-2), occurred in the city of Wuhan, Hubei Province, China. On January 30, 2020, the World Health Organization (WHO) declared the outbreak a public health emergency of international concern. Since then, frontline healthcare professionals have been experiencing extremely stressful situations and damage to their physical and mental health. These adverse conditions cause stress and biochemical, hematological, and inflammatory changes, as well as oxidative damage, and could be potentially detrimental to the health of the individual. The study population consisted of frontline health professionals working in BHU in a city in southern Brazil. Among the 45 participants, two were infected with the SARS-CoV-2 virus and were diagnosed using immunochromatographic tests such as salivary RT-LAMP and qRT-PCR. We also evaluated biochemical, hematological, inflammatory, and oxidative stress markers in the participants. The infected professionals (CoV-2-Prof) showed a significant increase in the levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), cholesterol, lactic dehydrogenase, lymphocytes, and monocytes. In this group, the levels of uric acid, triglycerides, leukocytes, neutrophils, hemoglobin, hematocrit, and platelets decreased. In the group of uninfected professionals (NoCoV-2-Prof), significant increase in HDL levels and the percentages of eosinophils and monocytes, was observed. Further, in this group, uric acid, LDH, triglyceride, and cholesterol levels, and the hematocrit count and mean corpuscular volume were significantly reduced. Both groups showed significant inflammatory activity with changes in the levels of C-reactive protein and mucoprotein. The NoCoV-2-Prof group showed significantly elevated plasma cortisol levels. To our kowledge, this study is the first to report the use of the RT-LAMP method with the saliva samples of health professionals, to evalute of SARS-CoV-2.


Assuntos
COVID-19 , SARS-CoV-2 , Atenção à Saúde , Humanos , Técnicas de Diagnóstico Molecular , Técnicas de Amplificação de Ácido Nucleico , Estresse Oxidativo
2.
Braz J Microbiol ; 54(4): 2587-2595, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37656404

RESUMO

To find novel antibiotic drugs, six 1-thiocarbamoyl-3,5-diaryl-4,5-dihydro-1H derivatives named 1b, 1d (pyrazoles), 2a, 2b, 2c, and 2d (thiazoles) were evaluated in silico and in vitro. The in silico analyses were based on ADME pharmacokinetic parameters (absorption, distribution, metabolism, and excretion). The in vitro antibacterial activity was evaluated in Gram-positive and Gram-negative species (Staphylococcus aureus ATCC® 25904, Staphylococcus epidermidis ATCC® 35984, Klebsiella pneumoniae ATCC® 700603, and Acinetobacter baumannii ATCC® 19606), by determination of minimal inhibitory concentration (MIC), minimal bactericidal concentration (MBC), kinetics curve, and antibiofilm assays. As results, the azoles have activity against the Gram-negative species K. pneumoniae ATCC® 700603 and A. baumannii ATCC® 19606. No antibacterial activity was observed for the Gram-positive bacteria evaluated. Thus, the azoles were evaluated against clinical isolates of K. pneumoniae carbapenemase (KPC) and A. baumannii multidrug-resistant (Ab-MDR). All azoles have antibacterial activity against Ab-MDR isolates (Gram-negative) with MIC values between 512 µg/mL and 1,024 µg/mL. Against KPC isolates the azoles 1b, 1d, and 2d present antibacterial activity (MIC = 1,024 µg/mL). In the kinetics curve assay, the 1b and 1d pyrazoles reduced significantly viable cells of Ab-MDR isolates and additionally inhibited 86.6 to 95.8% of the biofilm formation. The in silico results indicate high possibility to permeate the blood-brain barrier (2b) and was predict human gastrointestinal absorption (all evaluated azoles). Considering that the research and development of new antibiotics is a priority for drug-resistant pathogens, our study revealed the antibacterial and antibiofilm activity of novel azoles against K. pneumoniae and A. baumannii pathogens.


Assuntos
Antibacterianos , Tiazóis , Humanos , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , Pirazóis/farmacologia , Biofilmes
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa