Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Int J Mol Sci ; 23(14)2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35887032

RESUMO

Radiotherapy of head-and-neck squamous cell carcinoma (HNSCC) can cause considerable normal tissue injuries, and mesenchymal stromal cells (MSCs) have been shown to aid regeneration of irradiation-damaged normal tissues. However, utilization of MSC-based treatments for HNSCC patients undergoing radiotherapy is hampered by concerns regarding potential radioprotective effects. We therefore investigated the influence of MSCs on the radiosensitivity of HNSCCs. Several human papillomavirus (HPV)-negative and HPV-positive HNSCCs were co-cultured with human bone marrow-derived MSCs using two-dimensional and three-dimensional assays. Clonogenic survival, proliferation, and viability of HNSCCs after radiotherapy were assessed depending on MSC co-culture. Flow cytometry analyses were conducted to examine the influence of MSCs on irradiation-induced cell cycle distribution and apoptosis induction in HNSCCs. Immunofluorescence stainings of γH2AX were conducted to determine the levels of residual irradiation-induced DNA double-strand breaks. Levels of connective tissue growth factor (CTGF), a multifunctional pro-tumorigenic cytokine, were analyzed using enzyme-linked immunosorbent assays. Neither direct MSC co-culture nor MSC-conditioned medium exerted radioprotective effects on HNSCCs as determined by clonogenic survival, proliferation, and viability assays. Consistently, three-dimensional microwell arrays revealed no radioprotective effects of MSCs. Irradiation resulted in a G2/M arrest of HNSCCs at 96 h independently of MSC co-culture. HNSCCs' apoptosis rates were increased by irradiation irrespective of MSCs. Numbers of residual γH2AX foci after irradiation with 2 or 8 Gy were comparable between mono- and co-cultures. MSC mono-cultures and HNSCC-MSC co-cultures exhibited comparable CTGF levels. We did not detect radioprotective effects of human MSCs on HNSCCs. Our results suggest that the usage of MSC-based therapies for radiotherapy-related toxicities in HNSCC patients may be safe in the context of absent radioprotection.


Assuntos
Neoplasias de Cabeça e Pescoço , Células-Tronco Mesenquimais , Infecções por Papillomavirus , Apoptose , Linhagem Celular Tumoral , Pontos de Checagem da Fase G2 do Ciclo Celular , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Células-Tronco Mesenquimais/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia
2.
Plant Physiol ; 167(4): 1243-58, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25649633

RESUMO

Two kiwifruit (Actinidia) species with contrasting terpene profiles were compared to understand the regulation of fruit monoterpene production. High rates of terpinolene production in ripe Actinidia arguta fruit were correlated with increasing gene and protein expression of A. arguta terpene synthase1 (AaTPS1) and correlated with an increase in transcript levels of the 2-C-methyl-D-erythritol 4-phosphate pathway enzyme 1-deoxy-D-xylulose-5-phosphate synthase (DXS). Actinidia chinensis terpene synthase1 (AcTPS1) was identified as part of an array of eight tandemly duplicated genes, and AcTPS1 expression and terpene production were observed only at low levels in developing fruit. Transient overexpression of DXS in Nicotiana benthamiana leaves elevated monoterpene synthesis by AaTPS1 more than 100-fold, indicating that DXS is likely to be the key step in regulating 2-C-methyl-D-erythritol 4-phosphate substrate flux in kiwifruit. Comparative promoter analysis identified potential NAC (for no apical meristem [NAM], Arabidopsis transcription activation factor [ATAF], and cup-shaped cotyledon [CUC])-domain transcription factor) and ETHYLENE-INSENSITIVE3-like transcription factor (TF) binding sites in the AaTPS1 promoter, and cloned members of both TF classes were able to activate the AaTPS1 promoter in transient assays. Electrophoretic mobility shift assays showed that AaNAC2, AaNAC3, and AaNAC4 bind a 28-bp fragment of the proximal NAC binding site in the AaTPS1 promoter but not the A. chinensis AcTPS1 promoter, where the NAC binding site was mutated. Activation could be restored by reintroducing multiple repeats of the 12-bp NAC core-binding motif. The absence of NAC transcriptional activation in ripe A. chinensis fruit can account for the low accumulation of AcTPS1 transcript, protein, and monoterpene volatiles in this species. These results indicate the importance of NAC TFs in controlling monoterpene production and other traits in ripening fruits.


Assuntos
Actinidia/enzimologia , Alquil e Aril Transferases/metabolismo , Regulação da Expressão Gênica de Plantas , Monoterpenos/metabolismo , Proteínas de Plantas/metabolismo , Actinidia/genética , Actinidia/crescimento & desenvolvimento , Alquil e Aril Transferases/genética , Sequência de Bases , Eritritol/análogos & derivados , Eritritol/metabolismo , Etilenos/metabolismo , Frutas/enzimologia , Frutas/genética , Frutas/crescimento & desenvolvimento , Expressão Gênica , Dados de Sequência Molecular , Filogenia , Folhas de Planta/enzimologia , Folhas de Planta/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética , Alinhamento de Sequência , Análise de Sequência de DNA , Especificidade da Espécie , Fosfatos Açúcares/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transferases/genética , Transferases/metabolismo
3.
Strahlenther Onkol ; 190(11): 1037-45, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24863573

RESUMO

INTRODUCTION: Mesenchymal stem cells (MSCs) can regenerate damaged tissues and may therefore be of importance for normal tissue repair after cancer treatment. Small molecule receptor kinase inhibitors (RKIs) have recently been introduced into cancer treatment. However, the influence of these drugs-particularly in combination with radiotherapy-on the survival of MSCs is largely unknown. METHODS: The sensitivity of human primary MSCs from healthy volunteers and primary human fibroblast cells to small molecule kinase inhibitors of the vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF) and transforming growth factor ß (TGFß) receptors, as well to inhibitors of c-Kit, was examined in combination with ionizing radiation (IR); cell survival and proliferation were assessed. Expression patterns of different kinase receptors and ligands were investigated using gene arrays. RESULTS: MSCs were highly sensitive to the tyrosine kinase inhibitors SU14816 (imatinib) and SU11657 (sunitinib), but showed only moderate sensitivity to the selective TGFß receptor 1 inhibitor LY2109761. Primary adult human fibroblasts were comparably resistant to all three inhibitors. The addition of IR had an additive or supra-additive effect in the MSCs, but this was not the case for differentiated fibroblasts. Proliferation was markedly reduced in MSCs following kinase inhibition, both with and without IR. Gene expression analysis revealed high levels of the PDGF α and ß receptors, and lower levels of the TGFß receptor 2 and Abl kinase. IR did not alter the expression of kinase receptors or their respective ligands in either MSCs or adult fibroblasts. CONCLUSION: These data show that MSCs are highly sensitive to RKIs and combination treatments incorporating IR. Expression analyses suggest that high levels of PDGF receptors may contribute to this effect.


Assuntos
Células-Tronco Mesenquimais/fisiologia , Inibidores de Proteínas Quinases/administração & dosagem , Receptores do Fator de Crescimento Derivado de Plaquetas/antagonistas & inibidores , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Apoptose/efeitos da radiação , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Sobrevivência Celular/efeitos da radiação , Células Cultivadas , Relação Dose-Resposta a Droga , Relação Dose-Resposta à Radiação , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos da radiação , Doses de Radiação
4.
Sci Adv ; 8(12): eabh4050, 2022 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-35319989

RESUMO

Radiotherapy is a mainstay cancer therapy whose antitumor effects partially depend on T cell responses. However, the role of Natural Killer (NK) cells in radiotherapy remains unclear. Here, using a reverse translational approach, we show a central role of NK cells in the radiation-induced immune response involving a CXCL8/IL-8-dependent mechanism. In a randomized controlled pancreatic cancer trial, CXCL8 increased under radiotherapy, and NK cell positively correlated with prolonged overall survival. Accordingly, NK cells preferentially infiltrated irradiated pancreatic tumors and exhibited CD56dim-like cytotoxic transcriptomic states. In experimental models, NF-κB and mTOR orchestrated radiation-induced CXCL8 secretion from tumor cells with senescence features causing directional migration of CD56dim NK cells, thus linking senescence-associated CXCL8 release to innate immune surveillance of human tumors. Moreover, combined high-dose radiotherapy and adoptive NK cell transfer improved tumor control over monotherapies in xenografted mice, suggesting NK cells combined with radiotherapy as a rational cancer treatment strategy.


Assuntos
Interleucina-8 , Células Matadoras Naturais , Neoplasias , Transferência Adotiva , Animais , Humanos , Imunidade , Interleucina-8/imunologia , Interleucina-8/metabolismo , Células Matadoras Naturais/imunologia , Camundongos , Neoplasias/imunologia , Neoplasias/radioterapia , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Radiat Oncol ; 14(1): 119, 2019 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-31286978

RESUMO

BACKGROUND: Radiation therapy is a mainstay in the treatment of esophageal cancer (EC) patients, and photon radiotherapy has proved beneficial both in the neoadjuvant and the definitive setting. However, regarding the still poor prognosis of many EC patients, particle radiation employing a higher biological effectiveness may help to further improve patient outcomes. However, the influence of clinically available particle radiation on EC cells remains largely unknown. METHODS: Patient-derived esophageal adenocarcinoma and squamous cell cancer lines were treated with photon and particle irradiation using clinically available proton (1H), carbon (12C) or oxygen (16O) beams at the Heidelberg Ion Therapy Center. Histology-dependent clonogenic survival was calculated for increasing physical radiation doses, and resulting relative biological effectiveness (RBE) was calculated for each radiation modality. Cell cycle effects caused by photon and particle radiation were assessed, and radiation-induced apoptosis was measured in adenocarcinoma and squamous cell EC samples by activated caspase-3 and sub-G1 populations. Repair kinetics of DNA double strand breaks induced by photon and particle radiation were investigated. RESULTS: While both adenocarcinoma EC cell lines demonstrated increasing sensitivities for 1H, 12C and 16O radiation, the two squamous cell carcinoma lines exhibited a more heterogeneous response to photon and particle treatment; average RBE values were calculated as 1.15 for 1H, 2.3 for 12C and 2.5 for 16O irradiation. After particle irradiation, squamous cell EC samples reacted with an increased and prolonged block in G2 phase of the cell cycle compared to adenocarcinoma cells. Particle radiation resulted in an incomplete repair of radiation-induced DNA double strand breaks in both adenocarcinoma and squamous cell carcinoma samples, with the levels of initial strand break induction correlating well with the individual cellular survival after photon and particle radiation. Similarly, EC samples demonstrated heterogeneous levels of radiation-induced apoptosis that also corresponded to the observed cellular survival of individual cell lines. CONCLUSIONS: Esophageal cancer cells exhibit differential responses to irradiation with photons and 1H, 12C and 16O particles that were independent of tumor histology. Therefore, yet unknown molecular markers beyond histology may help to establish which esophageal cancer patients benefit from the biological effects of particle treatment.


Assuntos
Adenocarcinoma/patologia , Apoptose/efeitos da radiação , Carcinoma de Células Escamosas/patologia , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Neoplasias Esofágicas/patologia , Fótons , Adenocarcinoma/radioterapia , Carcinoma de Células Escamosas/radioterapia , Reparo do DNA/efeitos da radiação , Neoplasias Esofágicas/radioterapia , Humanos , Células Tumorais Cultivadas
6.
Int J Radiat Oncol Biol Phys ; 100(5): 1259-1269, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29452769

RESUMO

PURPOSE: Human mesenchymal stromal cells (MSCs) may aid the regeneration of ionizing radiation (IR)-induced tissue damage. They can be harvested from different tissues for clinical purposes; however, the role of the tissue source on the radiation response of human MSCs remains unknown. METHODS AND MATERIALS: Human MSCs were isolated from adipose tissue, bone marrow, and umbilical cord, and cellular survival, proliferation, and apoptosis were measured after irradiation. The influence of IR on the defining functions of MSCs was assessed, and cell morphology, surface marker expression, and the differentiation potential were examined. Western blot analyses were performed to assess the activation of DNA damage signaling and repair pathways. RESULTS: MSCs from adipose tissue, bone marrow, and umbilical cord exhibited a relative radioresistance independent of their tissue of origin. Defining properties including cellular adhesion and surface marker expression were preserved, and irradiated MSCs maintained their potential for multilineage differentiation irrespective of their tissue source. Analysis of activated DNA damage recognition and repair pathways demonstrated an efficient repair of IR-induced DNA double-strand breaks in MSCs from different tissues, thereby influencing the induction of apoptosis. CONCLUSIONS: These data show for the first time that MSCs are resistant to IR and largely preserve their defining functions after irradiation irrespective of their tissue of origin. Efficient repair of IR-induced DNA double-strand breaks and consecutive reduction of apoptosis induction may contribute to the tissue-independent radiation resistance of MSCs.


Assuntos
Células-Tronco Mesenquimais/efeitos da radiação , Especificidade de Órgãos , Tolerância a Radiação , Tecido Adiposo/citologia , Apoptose/efeitos da radiação , Biomarcadores/análise , Células da Medula Óssea/citologia , Células da Medula Óssea/efeitos da radiação , Adesão Celular/efeitos da radiação , Diferenciação Celular/efeitos da radiação , Movimento Celular , Proliferação de Células/efeitos da radiação , Sobrevivência Celular/efeitos da radiação , Senescência Celular/efeitos da radiação , Humanos , Células-Tronco Mesenquimais/citologia , Cordão Umbilical/citologia
7.
Oncotarget ; 8(50): 87809-87820, 2017 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-29152122

RESUMO

Cisplatin-based chemo-radiotherapy is widely used to treat cancers with often severe therapy-associated late toxicities. While mesenchymal stem cells (MSCs) were shown to aid regeneration of cisplatin- or radiation-induced tissue lesions, the effect of the combined treatment on the stem cells remains unknown. Here we demonstrate that cisplatin treatment radiosensitized human bone marrow-derived MSCs in a dose-dependent manner and increased levels of radiation-induced apoptosis. However, the defining stem cell properties of MSCs remained largely intact after cisplatin-based chemo-radiation, and stem cell motility, adhesion, surface marker expression and the characteristic differentiation potential were not significantly influenced. The increased cisplatin-mediated radiosensitivity was associated with a cell cycle shift of MSCs towards the radiosensitive G2/M phase and increased residual DNA double-strand breaks. These data demonstrate for the first time a dose-dependent radiosensitization effect of MSCs by cisplatin. Clinically, the observed increase in radiation sensitivity and subsequent loss of regenerative MSCs may contribute to the often severe late toxicities observed after cisplatin-based chemo-radiotherapy in cancer patients.

8.
Cancer Lett ; 374(1): 75-84, 2016 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-26876302

RESUMO

BACKGROUND: Inhibition of cellular topoisomerases has been established as an effective way of treating certain cancers, albeit with often high levels of toxicity to the bone marrow. While the involvement of mesenchymal stem cells (MSCs) in bone marrow homeostasis and regeneration has been well established, the effects of topoisomerase-inhibiting anticancer agents remain largely unknown. MATERIALS AND METHODS: Human bone marrow MSCs were treated with topoisomerase I inhibitor irinotecan or topoisomerase II inhibitor etoposide, and survival and apoptosis levels were measured. The influence of topoisomerase inhibition on cellular morphology, adhesion and migration potential and the ability to differentiate was assessed. Additionally, the role of individual DNA double-strand break repair pathways in MSCs was investigated as a potential cellular mechanism of resistance to topoisomerase inhibitors. RESULTS: Human bone marrow MSCs were found relatively resistant to topoisomerase I and II inhibitors and show survival levels comparable to these of differentiated fibroblasts. Treatment with irinotecan or etoposide did not significantly influence cellular adhesion, migratory ability, surface marker expression or induction of apoptosis in human MSCs. The ability to differentiate was found preserved in MSCs after exposure to high doses of irinotecan or etoposide. MSCs were able to efficiently repair DNA double-strand breaks induced by topoisomerase inhibitors both by non-homologous end joining and homologous recombination pathways. CONCLUSION: Our data demonstrate a topoisomerase-resistant phenotype of human MSCs that may at least in part be due to the stem cells' ability to efficiently remove DNA damage caused by these anticancer agents. The observed resistance of MSCs warrants further investigation of these cells as a potential therapeutic option for treating topoisomerase inhibitor-induced bone marrow damage.


Assuntos
Inibidores da Topoisomerase I/farmacologia , Inibidores da Topoisomerase II/farmacologia , Apoptose/efeitos dos fármacos , Camptotecina/análogos & derivados , Camptotecina/farmacologia , Adesão Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Resistência a Medicamentos , Etoposídeo/farmacologia , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/enzimologia , Humanos , Irinotecano , Células MCF-7 , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/enzimologia
9.
Sci Rep ; 6: 26645, 2016 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-27215195

RESUMO

Mesenchymal stem cells (MSCs) have been shown to attenuate pulmonary damage induced by bleomycin-based anticancer treatments, but the influence of bleomycin on the stem cells themselves remains largely unknown. Here, we demonstrate that human bone marrow-derived MSCs are relatively sensitive to bleomycin exposure compared to adult fibroblasts. MSCs revealed increased levels of apoptosis after bleomycin treatment, while cellular morphology, stem cell surface marker expression and the ability for adhesion and migration remained unchanged. Bleomycin treatment also resulted in a reduced adipogenic differentiation potential of these stem cells. MSCs were found to efficiently repair DNA double strand breaks induced by bleomycin, mostly through non-homologous end joining repair. Low mRNA and protein expression levels of the inactivating enzyme bleomycin hydrolase were detected in MSCs that may contribute to the observed bleomycin-sensitive phenotype of these cells. The sensitivity of MSCs against bleomycin needs to be taken into consideration for ongoing and future treatment protocols investigating these stem cells as a potential treatment option for bleomycin-induced pulmonary damage in the clinic.


Assuntos
Bleomicina/efeitos adversos , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Bleomicina/farmacologia , Fibroblastos/metabolismo , Humanos
10.
Radiat Oncol ; 7: 52, 2012 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-22458853

RESUMO

PURPOSE: Histone deacetylase inhibitors are promising new substances in cancer therapy and have also been shown to sensitize different tumor cells to irradiation (XRT). We explored the effect as well as the radiosensitizing properties of suberoylanilide hydroxamic acid (SAHA) in vivo in a malignant rhabdoid tumor (MRT) mouse model. METHODS AND MATERIAL: Potential radiosensitization by SAHA was assessed in MRT xenografts by analysis of tumor growth delay, necrosis (HE), apoptosis (TUNEL), proliferation (ki-67) and γH2AX expression as well as dynamic 18F-Fluorodeoxyglucose Positron Emission Tomography (18F-FDG -PET) after treatment with either SAHA alone, single-dose (10 Gy) or fractionated XRT (3 × 3Gy) solely as well as in combination with SAHA compared to controls. RESULTS: SAHA only had no significant effect on tumor growth. Combination of SAHA for 8 days with single-dose XRT resulted in a higher number of complete remissions, but failed to prove a significant growth delay compared to XRT only. In contrast fractionated XRT plus SAHA for 3 weeks did induce significant tumor growth delay in MRT-xenografts. The histological examination showed a significant effect of XRT in tumor necrosis, expression of Ki-67, γH2AX and apoptosis. SAHA only had no significant effect in the histological examination. Comparison of xenografts treated with XRT and XRT plus SAHA revealed a significantly increased γH2AX expression and apoptosis induction in the mice tumors after combination treatment with single-dose as well as fractionated XRT. The combination of SAHA with XRT showed a tendency to increased necrosis and decrease of proliferation compared to XRT only, which, however, was not significant. The 18F-FDG-PET results showed no significant differences in the standard uptake value or glucose transport kinetics after either treatment. CONCLUSION: SAHA did not have a significant effect alone, but proved to enhance the effect of XRT in our MRT in vivo model.


Assuntos
Quimiorradioterapia/métodos , Ácidos Hidroxâmicos/farmacologia , Radiossensibilizantes/farmacologia , Tumor Rabdoide/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Modelos Animais de Doenças , Feminino , Citometria de Fluxo , Inibidores de Histona Desacetilases/farmacologia , Humanos , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Camundongos , Camundongos Nus , Tomografia por Emissão de Pósitrons , Radioterapia , Tumor Rabdoide/diagnóstico por imagem , Tumor Rabdoide/radioterapia , Vorinostat , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Radiat Oncol ; 6: 119, 2011 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-21933400

RESUMO

INTRODUCTION: The pan-HDAC inhibitor (HDACI) suberoylanilide hydroxamic acid (SAHA) has previously shown to be a radio-sensitizer to conventional photon radiotherapy (XRT) in pediatric sarcoma cell lines. Here, we investigate its effect on the response of two sarcoma cell lines and a normal tissue cell line to heavy ion irradiation (HIT). MATERIALS AND METHODS: Clonogenic assays after different doses of heavy ions were performed. DNA damage and repair were evaluated by measuring γH2AX via flow-cytometry. Apoptosis and cell cycle analysis were also measured via flow cytometry. Protein expression of repair proteins, p53 and p21 were measured using immunoblot analysis. Changes of nuclear architecture after treatment with SAHA and HIT were observed in one of the sarcoma cell lines via light microscopy after staining towards chromatin and γH2AX. RESULTS: Corresponding with previously reported photon data, SAHA lead to an increase of sensitivity to heavy ions along with an increase of DSB and apoptosis in the two sarcoma cell lines. In contrast, in the osteoblast cell line (hFOB 1.19), the combination of SAHA and HIT showed a significant radio-protective effect. Laser scanning microscopy revealed no significant morphologic changes after HIT compared to the combined treatment with SAHA. Immunoblot analysis revealed no significant up or down regulation of p53. However, p21 was significantly increased by SAHA and combination treatment as compared to HIT only in the two sarcoma cell lines--again in contrast to the osteoblast cell line. Changes in the repair kinetics of DSB p53-independent apoptosis with p21 involvement may be part of the underlying mechanisms for radio-sensitization by SAHA. CONCLUSION: Our in vitro data suggest an increase of the therapeutic ratio by the combination of SAHA with HIT in infantile sarcoma cell lines.


Assuntos
Terapia Combinada/métodos , Íons Pesados , Ácidos Hidroxâmicos/uso terapêutico , Radioterapia/métodos , Sarcoma/terapia , Antineoplásicos/farmacologia , Apoptose , Linhagem Celular Tumoral , Separação Celular , Cromatina/química , Cromatina/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Citometria de Fluxo/métodos , Histonas/química , Humanos , Recém-Nascido , Microscopia Confocal/métodos , Osteoblastos/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Vorinostat
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa