Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioessays ; 42(6): e1900243, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32338399

RESUMO

It is hypothesized that iron from biological tissues, liberated during decay, may have played a role in inhibiting loss of anatomical information during fossilization of extinct organisms. Most tissues in the animal kingdom contain iron in different forms. A widely distributed iron-bearing molecule is ferritin, a globular protein that contains iron crystallites in the form of ferrihydrite minerals. Iron concentrations in ferritin are high and ferrihydrites are extremely reactive. When ancient animals are decaying on the sea floor under anoxic environmental conditions, ferrihydrites may initialize the selective replication of some tissues in pyrite FeS2 . This model explains why some labile tissues are preserved, while other more resistant structures decay and are absent in many fossils. A major implication of this hypothesis is that structures described as brains in Cambrian arthropods are not fossilization artifacts, but are instead a source of information on anatomical evolution at the dawn of complex animal life.


Assuntos
Artrópodes , Fósseis , Animais , Evolução Biológica , Encéfalo , Ferro , Preservação Biológica
2.
J Synchrotron Radiat ; 28(Pt 5): 1598-1609, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34475306

RESUMO

X-ray computed tomography (XCT) is a well known method for three-dimensional characterization of materials that is established as a powerful tool in high-pressure/high-temperature research. The optimization of synchrotron beamlines and the development of fast high-efficiency detectors now allow the addition of a temporal dimension to tomography studies under extreme conditions. Presented here is the experimental setup developed on the PSICHE beamline at SOLEIL to perform high-speed XCT in the Ultra-fast Tomography Paris-Edinburgh cell (UToPEc). The UToPEc is a compact panoramic (165° angular aperture) press optimized for fast tomography that can access 10 GPa and 1700°C. It is installed on a high-speed rotation stage (up to 360°â€…s-1) and allows the acquisition of a full computed tomography (CT) image with micrometre spatial resolution within a second. This marks a major technical breakthrough for time-lapse XCT and the real-time visualization of evolving dynamic systems. In this paper, a practical step-by-step guide to the use of the technique is provided, from the collection of CT images and their reconstruction to performing quantitative analysis, while accounting for the constraints imposed by high-pressure and high-temperature experimentation. The tomographic series allows the tracking of key topological parameters such as phase fractions from 3D volumetric data, and also the evolution of morphological properties (e.g. volume, flatness, dip) of each selected entity. The potential of this 4D tomography is illustrated by percolation experiments of carbonate melts within solid silicates, relevant for magma transfers in the Earth's mantle.

3.
J Chem Phys ; 141(10): 104505, 2014 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-25217935

RESUMO

High-pressure H2O polymorphs among which ice VI and ice VII are abundant in the interiors of large icy satellites and exo-planets. Knowledge of the elastic properties of these pure H2O ices at high-temperature and high-pressure is thus crucial to decipher the internal structure of icy bodies. In this study we assess for the first time the pressure-volume-temperature (PVT) relations of both polycrystalline pure ice VI and ice VII at high pressures and temperatures from 1 to 9 GPa and 300 to 450 K, respectively, by using in situ synchrotron X-ray diffraction. The PVT data are adjusted to a second-order Birch-Murnaghan equation of state and give V0 = 14.17(2) cm(3) mol(-1), K0 = 14.05(23) GPa, and α0 = 14.6(14) × 10(-5) K(-1) for ice VI and V0 = 12.49(1) cm(3) mol(-1), K0 = 20.15(16) GPa, and α0 = 11.6(5) × 10(-5) K(-1) for ice VII.

4.
Proc Natl Acad Sci U S A ; 108(13): 5184-7, 2011 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-21402927

RESUMO

The global geochemical carbon cycle involves exchanges between the Earth's interior and the surface. Carbon is recycled into the mantle via subduction mainly as carbonates and is released to the atmosphere via volcanism mostly as CO(2). The stability of carbonates versus decarbonation and melting is therefore of great interest for understanding the global carbon cycle. For all these reasons, the thermodynamic properties and phase diagrams of these minerals are needed up to core mantle boundary conditions. However, the nature of C-bearing minerals at these conditions remains unclear. Here we show the existence of a new Mg-Fe carbon-bearing compound at depths greater than 1,800 km. Its structure, based on three-membered rings of corner-sharing (CO(4))(4-) tetrahedra, is in close agreement with predictions by first principles quantum calculations [Oganov AR, et al. (2008) Novel high-pressure structures of MgCO(3), CaCO(3) and CO(2) and their role in Earth's lower mantle. Earth Planet Sci Lett 273:38-47]. This high-pressure polymorph of carbonates concentrates a large amount of Fe((III)) as a result of intracrystalline reaction between Fe((II)) and (CO(3))(2-) groups schematically written as 4FeO + CO(2) → 2Fe(2)O(3) + C. This results in an assemblage of the new high-pressure phase, magnetite and nanodiamonds.


Assuntos
Carbono/química , Carbonatos/química , Planeta Terra , Minerais/química , Ferro/química , Magnésio/química , Estrutura Molecular , Pressão , Temperatura , Termodinâmica , Difração de Raios X
5.
Rev Sci Instrum ; 92(9): 093906, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34598485

RESUMO

We report a new technique for torsional testing of materials under giga-pascal pressures, which uses a shearing module in a large-volume Paris-Edinburgh press in combination with high-resolution fast radiographic x-ray imaging. The measurement of the relative amplitude and phase lag between the cyclic displacement in the sample and a standard material (Al2O3) provides the effective shear modulus and attenuation factor for the sample. The system can operate in the 0.001-0.01 Hz frequency range and up to 5 GPa and 2000 K although high-temperature measurements may be affected by grain growth and plastic strain. Preliminary experimental results on San Carlos olivine are in quantitative agreement with previously reported Q-1 factors at lower pressure. This cyclic torsional loading method opens new directions to quantify the viscoelastic properties of minerals/rocks at seismic frequencies and under pressure-temperature conditions relevant to the Earth's mantle for a better interpretation of seismological data.

6.
Proc Natl Acad Sci U S A ; 104(34): 13588-90, 2007 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-17686973

RESUMO

Silica is the most abundant oxide component in the Earth mantle by weight, and stishovite, the rutile-structured (P4(2)/mnm) high-pressure phase with silica in six coordination by oxygen, is one of the main constituents of the basaltic layer of subducting slabs. It may also be present as a free phase in the lower mantle and at the core-mantle boundary. Pure stishovite undergoes a displacive phase transition to the CaCl(2) structure (Pnnm) at approximately 55 GPa. Theory suggests that this transition is associated with softening of the shear modulus that could provide a significant seismic signature, but none has ever been observed in the Earth. However, stishovite in natural rocks is expected to contain up to 5 wt % Al(2)O(3) and possibly water. Here we report the acoustic velocities, densities, and Raman frequencies of aluminum- and hydrogen-bearing stishovite with a composition close to that expected in the Earth mantle at pressures up to 43.8(3) GPa [where (3) indicates an uncertainty of 0.3 GPa]. The post-stishovite phase transition occurs at 24.3(5) GPa (at 298 K), far lower than for pure silica at 50-60 GPa. Our results suggest that the rutile-CaCl(2) transition in natural stishovite (with 5 wt % Al(2)O(3)) should occur at approximately 30 GPa or approximately 1,000-km depth at mantle temperatures. The major changes in elastic properties across this transition could make it visible in seismic profiles and may be responsible for seismic reflectors observed at 1,000- to 1,400-km depth.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa