RESUMO
The SARS-CoV-2 RNA-dependent RNA polymerase coordinates viral RNA synthesis as part of an assembly known as the replication-transcription complex (RTC)1. Accordingly, the RTC is a target for clinically approved antiviral nucleoside analogues, including remdesivir2. Faithful synthesis of viral RNAs by the RTC requires recognition of the correct nucleotide triphosphate (NTP) for incorporation into the nascent RNA. To be effective inhibitors, antiviral nucleoside analogues must compete with the natural NTPs for incorporation. How the SARS-CoV-2 RTC discriminates between the natural NTPs, and how antiviral nucleoside analogues compete, has not been discerned in detail. Here, we use cryogenic-electron microscopy to visualize the RTC bound to each of the natural NTPs in states poised for incorporation. Furthermore, we investigate the RTC with the active metabolite of remdesivir, remdesivir triphosphate (RDV-TP), highlighting the structural basis for the selective incorporation of RDV-TP over its natural counterpart adenosine triphosphate3,4. Our results explain the suite of interactions required for NTP recognition, informing the rational design of antivirals. Our analysis also yields insights into nucleotide recognition by the nsp12 NiRAN (nidovirus RdRp-associated nucleotidyltransferase), an enigmatic catalytic domain essential for viral propagation5. The NiRAN selectively binds guanosine triphosphate, strengthening proposals for the role of this domain in the formation of the 5' RNA cap6.
Assuntos
RNA-Polimerase RNA-Dependente de Coronavírus , Microscopia Crioeletrônica , SARS-CoV-2 , Humanos , Antivirais/química , Antivirais/metabolismo , Antivirais/farmacologia , RNA-Polimerase RNA-Dependente de Coronavírus/química , RNA-Polimerase RNA-Dependente de Coronavírus/metabolismo , RNA-Polimerase RNA-Dependente de Coronavírus/ultraestrutura , COVID-19/virologia , Nucleosídeos/metabolismo , Nucleosídeos/farmacologia , RNA Viral/biossíntese , RNA Viral/química , RNA Viral/metabolismo , SARS-CoV-2/enzimologia , Especificidade por Substrato , Guanosina Trifosfato/metabolismo , Capuzes de RNARESUMO
The development of safe and effective broad-spectrum antivirals that target the replication machinery of respiratory viruses is of high priority in pandemic preparedness programs. Here, we studied the mechanism of action of a newly discovered nucleotide analog against diverse RNA-dependent RNA polymerases (RdRps) of prototypic respiratory viruses. GS-646939 is the active 5'-triphosphate metabolite of a 4'-cyano modified C-adenosine analog phosphoramidate prodrug GS-7682. Enzyme kinetics show that the RdRps of human rhinovirus type 16 (HRV-16) and enterovirus 71 incorporate GS-646939 with unprecedented selectivity; GS-646939 is incorporated 20-50-fold more efficiently than its natural ATP counterpart. The RdRp complex of respiratory syncytial virus and human metapneumovirus incorporate GS-646939 and ATP with similar efficiency. In contrast, influenza B RdRp shows a clear preference for ATP and human mitochondrial RNA polymerase does not show significant incorporation of GS-646939. Once incorporated into the nascent RNA strand, GS-646939 acts as a chain terminator although higher NTP concentrations can partially overcome inhibition for some polymerases. Modeling and biochemical data suggest that the 4'-modification inhibits RdRp translocation. Comparative studies with GS-443902, the active triphosphate form of the 1'-cyano modified prodrugs remdesivir and obeldesivir, reveal not only different mechanisms of inhibition, but also differences in the spectrum of inhibition of viral polymerases. In conclusion, 1'-cyano and 4'-cyano modifications of nucleotide analogs provide complementary strategies to target the polymerase of several families of respiratory RNA viruses.
Assuntos
Antivirais , RNA Polimerase Dependente de RNA , Humanos , Antivirais/farmacologia , Antivirais/química , RNA Polimerase Dependente de RNA/antagonistas & inibidores , RNA Polimerase Dependente de RNA/metabolismo , RNA Polimerase Dependente de RNA/química , Vírus de RNA/efeitos dos fármacos , Vírus de RNA/enzimologia , Metapneumovirus/efeitos dos fármacos , Nucleotídeos/química , Nucleotídeos/farmacologia , Nucleotídeos/metabolismoRESUMO
Hepatitis B Virus (HBV) is a major driver of infectious disease mortality. Curative therapies are needed and ideally should induce CD8 T cell-mediated clearance of infected hepatocytes plus anti-hepatitis B surface antigen (HBsAg) antibodies (anti-HBs) to neutralize residual virus. We developed a novel therapeutic vaccine using non-replicating arenavirus vectors. Antigens were screened for genotype conservation and magnitude and genotype reactivity of T cell response, then cloned into Pichinde virus (PICV) vectors (recombinant PICV, GS-2829) and lymphocytic choriomeningitis virus (LCMV) vectors (replication-incompetent, GS-6779). Alternating immunizations with GS-2829 and GS-6779 induced high-magnitude HBV T cell responses, and high anti-HBs titers. Dose schedule optimization in macaques achieved strong polyfunctional CD8 T cell responses against core, HBsAg, and polymerase and high titer anti-HBs. In AAV-HBV mice, GS-2829 and GS-6779 were efficacious in animals with low pre-treatment serum HBsAg. Based on these results, GS-2829 and GS-6779 could become a central component of cure regimens.
Assuntos
Arenavirus , Hepatite B , Camundongos , Animais , Antígenos de Superfície da Hepatite B , Vírus da Hepatite B/genética , Vacinas contra Hepatite B , Anticorpos Anti-Hepatite B , Imunização , Linfócitos T CD8-Positivos , Genótipo , Antígenos de SuperfícieRESUMO
BACKGROUND: Intravenous dihydroergotamine (DHE) has well-established efficacy for the acute treatment of migraine, but its use is limited by the need for in-hospital administration and the nausea/vomiting associated with a high maximum plasma concentration (Cmax). Inhalation is an alternative to intravenous dosing. The surface area of the lung allows for rapid absorption of a self-administered dose. OBJECTIVE: This study evaluated the safety, tolerability, and systemic pharmacokinetics (PK) of a dry powder formulation (PUR3100) DHE when delivered via inhalation compared to intravenous delivery. METHODS: In this double-blind, double-dummy Phase 1 study, healthy volunteers (N = 26) were randomized (1:1:1:1) to one of four groups: orally inhaled placebo plus intravenous DHE 1.0 mg or orally inhaled PUR3100 (0.5, 1.0, or 1.5 mg) plus intravenous placebo. Blood samples were drawn pre-dose and at time points post-dose over 48 h. Standard PK and safety parameters were assessed and values for Cmax and area under plasma concentration time curve (AUC) were used to assess comparative exposures of PUR3100 versus intravenous DHE. RESULTS: All doses of PUR3100 were associated with a lower incidence of nausea (21% vs. 86%), vomiting (0% vs. 29%), and headache (16% vs. 57%) compared to intravenous DHE. The PK profile of PUR3100 versus intravenous DHE was characterized by a similar mean time to Cmax (5 vs. 5.5 min), with reduced AUC0-2h (1120-4320 vs. 6340), and a lower Cmax (3620-14,400 vs. 45,000). Compared to intravenous DHE 1.0 mg, the highest nominal PUR3100 dose (1.5 mg), which delivers a fine-particle dose of approximately 0.9 mg to the lungs, had a geometric mean ratio percentage (90% confidence interval [CI]) for Cmax of 32% [17.2, 59.6] and AUC0-inf of 93% (62.9, 138.5), the latter of which was not significantly different. CONCLUSIONS: Inhaled PUR3100 is associated with rapid systemic PK within the therapeutic window and an improved safety profile relative to intravenous DHE.
Assuntos
Administração Intravenosa , Di-Hidroergotamina , Humanos , Di-Hidroergotamina/administração & dosagem , Di-Hidroergotamina/farmacocinética , Di-Hidroergotamina/efeitos adversos , Método Duplo-Cego , Masculino , Adulto , Feminino , Administração por Inalação , Adulto Jovem , Voluntários Saudáveis , Pessoa de Meia-Idade , Inaladores de Pó Seco , AdolescenteRESUMO
BACKGROUND: Remdesivir is approved for treatment of coronavirus disease 2019 (COVID-19) in nonhospitalized and hospitalized adult and pediatric patients. Here we present severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) resistance analyses from the phase 3 ACTT-1 randomized placebo-controlled trial conducted in adult participants hospitalized with COVID-19. METHODS: Swab samples were collected at baseline and longitudinally through day 29. SARS-CoV-2 genomes were sequenced using next-generation sequencing. Phenotypic analysis was conducted directly on participant virus isolates and/or using SARS-CoV-2 subgenomic replicons expressing mutations identified in the Nsp12 target gene. RESULTS: Among participants with both baseline and postbaseline sequencing data, emergent Nsp12 substitutions were observed in 12 of 31 (38.7%) and 12 of 30 (40.0%) participants in the remdesivir and placebo arms, respectively. No emergent Nsp12 substitutions in the remdesivir arm were observed in more than 1 participant. Phenotyping showed low to no change in susceptibility to remdesivir relative to wild-type Nsp12 reference for the substitutions tested: A16V (0.8-fold change in EC50), P323L + V792I (2.2-fold), C799F (2.5-fold), K59N (1.0-fold), and K59N + V792I (3.4-fold). CONCLUSIONS: The similar rate of emerging Nsp12 substitutions in the remdesivir and placebo arms and the minimal change in remdesivir susceptibility among tested substitutions support a high barrier to remdesivir resistance development in COVID-19 patients. Clinical Trials Registration. NCT04280705.
Assuntos
COVID-19 , Adulto , Humanos , Criança , SARS-CoV-2/genética , Tratamento Farmacológico da COVID-19 , Monofosfato de Adenosina/uso terapêutico , Alanina/uso terapêutico , Antivirais/uso terapêuticoRESUMO
Remdesivir (RDV) is a direct-acting antiviral agent that is approved in several countries for the treatment of coronavirus disease 2019 caused by the severe acute respiratory syndrome coronavirus 2. RDV exhibits broad-spectrum antiviral activity against positive-sense RNA viruses, for example, severe acute respiratory syndrome coronavirus and hepatitis C virus, and nonsegmented negative-sense RNA viruses, for example, Nipah virus, whereas segmented negative-sense RNA viruses such as influenza virus or Crimean-Congo hemorrhagic fever virus are not sensitive to the drug. The reasons for this apparent efficacy pattern are unknown. Here, we expressed and purified representative RNA-dependent RNA polymerases and studied three biochemical parameters that have been associated with the inhibitory effects of RDV-triphosphate (TP): (i) selective incorporation of the nucleotide substrate RDV-TP, (ii) the effect of the incorporated RDV-monophosphate (MP) on primer extension, and (iii) the effect of RDV-MP in the template during incorporation of the complementary UTP. We found a strong correlation between antiviral effects and efficient incorporation of RDV-TP. Inhibition in primer extension reactions was heterogeneous and usually inefficient at higher NTP concentrations. In contrast, template-dependent inhibition of UTP incorporation opposite the embedded RDV-MP was seen with all polymerases. Molecular modeling suggests a steric conflict between the 1'-cyano group of the inhibitor and residues of the structurally conserved RNA-dependent RNA polymerase motif F. We conclude that future efforts in the development of nucleotide analogs with a broader spectrum of antiviral activities should focus on improving rates of incorporation while capitalizing on the inhibitory effects of a bulky 1'-modification.
Assuntos
Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Modelos Moleculares , Vírus de RNA/enzimologia , RNA Polimerase Dependente de RNA/antagonistas & inibidores , Monofosfato de Adenosina/química , Monofosfato de Adenosina/farmacologia , Alanina/química , Alanina/farmacologia , Antivirais/farmacologia , Hepacivirus/efeitos dos fármacos , Hepacivirus/enzimologia , Vírus de RNA de Sentido Negativo/efeitos dos fármacos , Vírus de RNA de Sentido Negativo/enzimologia , Vírus Nipah/efeitos dos fármacos , Vírus Nipah/enzimologia , Vírus de RNA de Cadeia Positiva/efeitos dos fármacos , Vírus de RNA de Cadeia Positiva/enzimologia , Vírus de RNA/efeitos dos fármacos , RNA Viral/metabolismo , RNA Polimerase Dependente de RNA/química , RNA Polimerase Dependente de RNA/metabolismo , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/enzimologia , Replicação Viral/efeitos dos fármacosRESUMO
Remdesivir is a broad-spectrum antiviral nucleotide prodrug that has been clinically evaluated in Ebola virus patients and recently received emergency use authorization (EUA) for treatment of COVID-19. With approvals from the Federal Select Agent Program and the Centers for Disease Control and Prevention's Institutional Biosecurity Board, we characterized the resistance profile of remdesivir by serially passaging Ebola virus under remdesivir selection; we generated lineages with low-level reduced susceptibility to remdesivir after 35 passages. We found that a single amino acid substitution, F548S, in the Ebola virus polymerase conferred low-level reduced susceptibility to remdesivir. The F548 residue is highly conserved in filoviruses but should be subject to specific surveillance among novel filoviruses, in newly emerging variants in ongoing outbreaks, and also in Ebola virus patients undergoing remdesivir therapy. Homology modeling suggests that the Ebola virus polymerase F548 residue lies in the F-motif of the polymerase active site, a region that was previously identified as susceptible to resistance mutations in coronaviruses. Our data suggest that molecular surveillance of this region of the polymerase in remdesivir-treated COVID-19 patients is also warranted.
Assuntos
Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Antivirais/farmacologia , Betacoronavirus/enzimologia , Ebolavirus/enzimologia , RNA Polimerase Dependente de RNA/química , Proteínas não Estruturais Virais/química , Monofosfato de Adenosina/farmacologia , Alanina/farmacologia , Betacoronavirus/química , Linhagem Celular , Tolerância a Medicamentos/genética , Ebolavirus/efeitos dos fármacos , Ebolavirus/genética , Humanos , Modelos Moleculares , Mutação , RNA Polimerase Dependente de RNA/genética , SARS-CoV-2 , Proteínas não Estruturais Virais/genética , Replicação Viral/efeitos dos fármacosRESUMO
The SARS-CoV-2 replication-transcription complex is an assembly of nonstructural viral proteins that collectively act to reproduce the viral genome and generate mRNA transcripts. While the structures of the individual proteins involved are known, how they assemble into a functioning superstructure is not. Applying molecular modeling tools, including protein-protein docking, to the available structures of nsp7-nsp16 and the nucleocapsid, we have constructed an atomistic model of how these proteins associate. Our principal finding is that the complex is hexameric, centered on nsp15. The nsp15 hexamer is capped on two faces by trimers of nsp14/nsp16/(nsp10)2, which then recruit six nsp12/nsp7/(nsp8)2 polymerase subunits to the complex. To this, six subunits of nsp13 are arranged around the superstructure, but not evenly distributed. Polymerase subunits that coordinate dimers of nsp13 are capable of binding the nucleocapsid, which positions the 5'-UTR TRS-L RNA over the polymerase active site, a state distinguishing transcription from replication. Analysis of the viral RNA path through the complex indicates the dsRNA that exits the polymerase passes over the nsp14 exonuclease and nsp15 endonuclease sites before being unwound by a convergence of zinc fingers from nsp10 and nsp14. The template strand is then directed away from the complex, while the nascent strand is directed to the sites responsible for mRNA capping. The model presents a cohesive picture of the multiple functions of the coronavirus replication-transcription complex and addresses fundamental questions related to proofreading, template switching, mRNA capping, and the role of the endonuclease.
Assuntos
Endorribonucleases/metabolismo , Modelos Moleculares , SARS-CoV-2/metabolismo , Proteínas não Estruturais Virais/metabolismo , Sítios de Ligação , COVID-19/patologia , COVID-19/virologia , Dimerização , Endorribonucleases/química , Endorribonucleases/genética , Humanos , Simulação de Acoplamento Molecular , Estrutura Quaternária de Proteína , RNA de Cadeia Dupla/química , RNA de Cadeia Dupla/metabolismo , SARS-CoV-2/isolamento & purificação , Transcrição Gênica , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética , Replicação ViralRESUMO
In vitro selection of remdesivir-resistant severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) revealed the emergence of a V166L substitution, located outside of the polymerase active site of the Nsp12 protein, after 9 passages of a single lineage. V166L remained the only Nsp12 substitution after 17 passages (10 µM remdesivir), conferring a 2.3-fold increase in 50% effective concentration (EC50). When V166L was introduced into a recombinant SARS-CoV-2 virus, a 1.5-fold increase in EC50 was observed, indicating a high in vitro barrier to remdesivir resistance.
Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/química , Alanina/análogos & derivados , Alanina/metabolismo , Antivirais/química , HumanosRESUMO
Genetic variation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in the emergence and rapid spread of multiple variants throughout the pandemic, of which Omicron is currently the predominant variant circulating worldwide. SARS-CoV-2 variants of concern/variants of interest (VOC/VOI) have evidence of increased viral transmission, disease severity, or decreased effectiveness of vaccines and neutralizing antibodies. Remdesivir (RDV [VEKLURY]) is a nucleoside analog prodrug and the first FDA-approved antiviral treatment of COVID-19. Here, we present a comprehensive antiviral activity assessment of RDV and its parent nucleoside, GS-441524, against 10 current and former SARS-CoV-2 VOC/VOI clinical isolates by nucleoprotein enzyme-linked immunosorbent assay (ELISA) and plaque reduction assay. Delta and Omicron variants remained susceptible to RDV and GS-441524, with 50% effective concentration (EC50) values 0.30- to 0.62-fold of those observed against the ancestral WA1 isolate. All other tested variants exhibited EC50 values ranging from 0.13- to 2.3-fold of the observed EC50 values against WA1. Analysis of nearly 6 million publicly available variant isolate sequences confirmed that Nsp12, the RNA-dependent RNA polymerase (RdRp) target of RDV and GS-441524, is highly conserved across variants, with only 2 prevalent changes (P323L and G671S). Using recombinant viruses, both RDV and GS-441524 retained potency against all viruses containing frequent variant substitutions or their combination. Taken together, these results highlight the conserved nature of SARS-CoV-2 Nsp12 and provide evidence of sustained SARS-CoV-2 antiviral activity of RDV and GS-441524 across the tested variants. The observed pan-variant activity of RDV supports its continued use for the treatment of COVID-19 regardless of the SARS-CoV-2 variant.
Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Adenosina/análogos & derivados , Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Antivirais/farmacologia , Humanos , SARS-CoV-2/genéticaRESUMO
The urgent response to the COVID-19 pandemic required accelerated evaluation of many approved drugs as potential antiviral agents against the causative pathogen, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Using cell-based, biochemical, and modeling approaches, we studied the approved HIV-1 nucleoside/tide reverse transcriptase inhibitors (NRTIs) tenofovir (TFV) and emtricitabine (FTC), as well as prodrugs tenofovir alafenamide (TAF) and tenofovir disoproxilfumarate (TDF) for their antiviral effect against SARS-CoV-2. A comprehensive set of in vitro data indicates that TFV, TAF, TDF, and FTC are inactive against SARS-CoV-2. None of the NRTIs showed antiviral activity in SARS-CoV-2 infected A549-hACE2 cells or in primary normal human lung bronchial epithelial (NHBE) cells at concentrations up to 50 µM TAF, TDF, FTC, or 500 µM TFV. These results are corroborated by the low incorporation efficiency of respective NTP analogs by the SARS-CoV-2 RNA-dependent-RNA polymerase (RdRp), and lack of the RdRp inhibition. Structural modeling further demonstrated poor fitting of these NRTI active metabolites at the SARS-CoV-2 RdRp active site. Our data indicate that the HIV-1 NRTIs are unlikely direct-antivirals against SARS-CoV-2, and clinicians and researchers should exercise caution when exploring ideas of using these and other NRTIs to treat or prevent COVID-19.
Assuntos
Fármacos Anti-HIV , Tratamento Farmacológico da COVID-19 , Infecções por HIV , HIV-1 , Fármacos Anti-HIV/farmacologia , Fármacos Anti-HIV/uso terapêutico , Emtricitabina/farmacologia , Emtricitabina/uso terapêutico , Infecções por HIV/tratamento farmacológico , Humanos , Nucleosídeos/farmacologia , Nucleosídeos/uso terapêutico , Nucleotídeos/farmacologia , Pandemias , RNA Viral , RNA Polimerase Dependente de RNA , SARS-CoV-2 , Tenofovir/farmacologia , Tenofovir/uso terapêuticoRESUMO
Remdesivir (RDV) is a direct-acting antiviral agent that is used to treat patients with severe coronavirus disease 2019 (COVID-19). RDV targets the viral RNA-dependent RNA polymerase (RdRp) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We have previously shown that incorporation of the active triphosphate form of RDV (RDV-TP) at position i causes delayed chain termination at position i + 3. Here we demonstrate that the S861G mutation in RdRp eliminates chain termination, which confirms the existence of a steric clash between Ser-861 and the incorporated RDV-TP. With WT RdRp, increasing concentrations of NTP pools cause a gradual decrease in termination and the resulting read-through increases full-length product formation. Hence, RDV residues could be embedded in copies of the first RNA strand that is later used as a template. We show that the efficiency of incorporation of the complementary UTP opposite template RDV is compromised, providing a second opportunity to inhibit replication. A structural model suggests that RDV, when serving as the template for the incoming UTP, is not properly positioned because of a significant clash with Ala-558. The adjacent Val-557 is in direct contact with the template base, and the V557L mutation is implicated in low-level resistance to RDV. We further show that the V557L mutation in RdRp lowers the nucleotide concentration required to bypass this template-dependent inhibition. The collective data provide strong evidence to show that template-dependent inhibition of SARS-CoV-2 RdRp by RDV is biologically relevant.
Assuntos
Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Antivirais/farmacologia , RNA-Polimerase RNA-Dependente de Coronavírus/antagonistas & inibidores , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/enzimologia , Terminação da Transcrição Genética/efeitos dos fármacos , Monofosfato de Adenosina/farmacologia , Alanina/farmacologia , RNA-Polimerase RNA-Dependente de Coronavírus/química , RNA-Polimerase RNA-Dependente de Coronavírus/genética , RNA-Polimerase RNA-Dependente de Coronavírus/metabolismo , Modelos Químicos , Mutação , Nucleotídeos/metabolismo , SARS-CoV-2/genética , Moldes Genéticos , Replicação Viral/efeitos dos fármacosRESUMO
Effective treatments for coronavirus disease 2019 (COVID-19) are urgently needed to control this current pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Replication of SARS-CoV-2 depends on the viral RNA-dependent RNA polymerase (RdRp), which is the likely target of the investigational nucleotide analogue remdesivir (RDV). RDV shows broad-spectrum antiviral activity against RNA viruses, and previous studies with RdRps from Ebola virus and Middle East respiratory syndrome coronavirus (MERS-CoV) have revealed that delayed chain termination is RDV's plausible mechanism of action. Here, we expressed and purified active SARS-CoV-2 RdRp composed of the nonstructural proteins nsp8 and nsp12. Enzyme kinetics indicated that this RdRp efficiently incorporates the active triphosphate form of RDV (RDV-TP) into RNA. Incorporation of RDV-TP at position i caused termination of RNA synthesis at position i+3. We obtained almost identical results with SARS-CoV, MERS-CoV, and SARS-CoV-2 RdRps. A unique property of RDV-TP is its high selectivity over incorporation of its natural nucleotide counterpart ATP. In this regard, the triphosphate forms of 2'-C-methylated compounds, including sofosbuvir, approved for the management of hepatitis C virus infection, and the broad-acting antivirals favipiravir and ribavirin, exhibited significant deficits. Furthermore, we provide evidence for the target specificity of RDV, as RDV-TP was less efficiently incorporated by the distantly related Lassa virus RdRp, and termination of RNA synthesis was not observed. These results collectively provide a unifying, refined mechanism of RDV-mediated RNA synthesis inhibition in coronaviruses and define this nucleotide analogue as a direct-acting antiviral.
Assuntos
Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Antivirais/farmacologia , Betacoronavirus/enzimologia , RNA Polimerase Dependente de RNA/antagonistas & inibidores , Replicação Viral/efeitos dos fármacos , Monofosfato de Adenosina/farmacologia , Alanina/farmacologia , Animais , Betacoronavirus/fisiologia , Modelos Moleculares , SARS-CoV-2 , Células Sf9 , SpodopteraRESUMO
BACKGROUND: Presatovir is an oral respiratory syncytial virus (RSV) fusion inhibitor targeting RSV F protein. In a double-blind, placebo-controlled study in healthy adults experimentally infected with RSV (Memphis-37b), presatovir significantly reduced viral load and clinical disease severity in a dose-dependent manner. METHODS: Viral RNA from nasal wash samples was amplified and the F gene sequenced to monitor presatovir resistance. Effects of identified amino acid substitutions on in vitro susceptibility to presatovir, viral fitness, and clinical outcome were assessed. RESULTS: Twenty-eight treatment-emergent F substitutions were identified. Of these, 26 were tested in vitro; 2 were not due to lack of recombinant virus recovery. Ten substitutions did not affect presatovir susceptibility, and 16 substitutions reduced RSV susceptibility to presatovir (2.9- to 410-fold). No substitutions altered RSV susceptibility to palivizumab or ribavirin. Frequency of phenotypically resistant substitutions was higher with regimens containing lower presatovir dose and shorter treatment duration. Participants with phenotypic presatovir resistance had significantly higher nasal viral load area under the curve relative to those without, but substitutions did not significantly affect peak viral load or clinical manifestations of RSV disease. CONCLUSIONS: Emergence of presatovir-resistant RSV occurred during therapy but did not significantly affect clinical efficacy in participants with experimental RSV infection.
Assuntos
Indazóis/uso terapêutico , Infecções por Vírus Respiratório Sincicial/tratamento farmacológico , Vírus Sinciciais Respiratórios/efeitos dos fármacos , Sulfonamidas/uso terapêutico , Inibidores de Proteínas Virais de Fusão/uso terapêutico , Adolescente , Adulto , Substituição de Aminoácidos , Relação Dose-Resposta a Droga , Método Duplo-Cego , Farmacorresistência Viral/genética , Humanos , Pessoa de Meia-Idade , Vírus Sinciciais Respiratórios/genética , Carga Viral/efeitos dos fármacos , Adulto JovemRESUMO
This study summarizes drug resistance analyses in 4 recent phase 2b trials of the respiratory syncytial virus (RSV) fusion inhibitor presatovir in naturally infected adults. Adult hematopoietic cell transplant (HCT) recipients, lung transplant recipients, or hospitalized patients with naturally acquired, laboratory-confirmed RSV infection were enrolled in 4 randomized, double-blind, placebo-controlled studies with study-specific presatovir dosing. Full-length RSV F sequences amplified from nasal swabs obtained at baseline and postbaseline were analyzed by population sequencing. Substitutions at RSV fusion inhibitor resistance-associated positions are reported. Genotypic analyses were performed on 233 presatovir-treated and 149 placebo-treated subjects. RSV F variant V127A was present in 8 subjects at baseline. Population sequencing detected treatment-emergent substitutions in 10/89 (11.2%) HCT recipients with upper and 6/29 (20.7%) with lower respiratory tract infection, 1/35 (2.9%) lung transplant recipients, and 1/80 (1.3%) hospitalized patients treated with presatovir; placebo-treated subjects had no emergent resistance-associated substitutions. Subjects with substitutions at resistance-associated positions had smaller decreases in viral load during treatment relative to those without, but they had similar clinical outcomes. Subject population type and dosing regimen may have influenced RSV resistance development during presatovir treatment. Subjects with genotypic resistance development had decreased virologic responses compared to those without genotypic resistance but had comparable clinical outcomes.
Assuntos
Transplante de Células-Tronco Hematopoéticas , Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Adulto , Antivirais/farmacologia , Antivirais/uso terapêutico , Resistência a Medicamentos , Humanos , Infecções por Vírus Respiratório Sincicial/tratamento farmacológico , Vírus Sincicial Respiratório Humano/genéticaRESUMO
AIMS: Oral itraconazole has variable pharmacokinetics and risks of adverse events associated with high plasma exposure. An inhalation formulation of itraconazole (PUR1900) is being developed to treat allergic bronchopulmonary aspergillosis, an allergic inflammatory disease occurring in asthmatics and patients with cystic fibrosis. METHODS: A 3-part, open-label Phase 1 study was conducted to evaluate safety, tolerability and pharmacokinetics of PUR1900. Healthy volunteers (n = 5-6/cohort) received either single (Part 1) or multiple (Part 2) ascending doses of PUR1900 for up to 14 days. In Part 3 stable, adult asthmatics received a single dose of 20 mg PUR1900 or 200 mg of oral Sporanox (itraconazole oral solution) in a 2-period randomized cross-over design. Itraconazole plasma and sputum concentrations were evaluated. RESULTS: None of the adverse events considered as at least possibly related to study treatment were moderate or severe, and none were classed as serious. The most common was the infrequent occurrence of mild cough. Itraconazole plasma exposure increased with increasing doses of PUR1900. After 14 days, PUR1900 resulted in plasma exposure (area under the concentration-time curve up to 24 h) 106- to 400-fold lower across doses tested (10-35 mg) than steady-state exposure reported for oral Sporanox 200 mg. In asthmatics, PUR1900 geometric mean maximum sputum concentrations were 70-fold higher and geometric mean plasma concentrations were 66-fold lower than with oral Sporanox. CONCLUSION: PUR1900 was safe and well-tolerated under the study conditions. Compared to oral dosing, PUR1900 achieved higher lung and lower plasma exposure. The pharmacokinetic profile of PUR1900 suggests the potential to improve upon the efficacy and safety profile observed with oral itraconazole.
Assuntos
Itraconazol , Administração Oral , Adulto , Área Sob a Curva , Estudos de Coortes , Estudos Cross-Over , Voluntários Saudáveis , Humanos , Itraconazol/efeitos adversosRESUMO
AIMS: Plasma pharmacokinetics permit the assessment of efficacy and safety of inhaled drugs, and possibly their bioequivalence to other inhaled products. Correlating drug product attributes to lung deposited dose is important to achieving equivalence. PUR0200 is a spray-dried formulation of tiotropium that enables more efficient lung delivery than Spiriva® HandiHaler® (HH). The ratio of tiotropium lung-to-oral deposition in PUR0200 was varied to investigate the impact of particle size on tiotropium pharmacokinetics, and the contribution of oral absorption to tiotropium exposure was assessed using charcoal block. METHODS: A seven-period, single-dose, crossover study was performed in healthy subjects. PUR0200 formulations differing in dose and aerodynamic particle size were administered in five periods and Spiriva HH in two periods. In one period, Spiriva HH gastrointestinal absorption was blocked with oral charcoal. Tiotropium plasma concentrations were assessed over 8 h after inhalation. RESULTS: PUR0200 pharmacokinetics were influenced by aerodynamic particle size and the ratio of lung-to-oral deposition, with impactor sized mass (ISM) correlating most strongly with exposure. Formulation PUR0217a (3 µg tiotropium) lung deposition was similar to Spiriva HH (18 µg) with and without charcoal block, but total PUR0200 exposure was lower without charcoal. The Cmax and AUC0-0.5h of Spiriva HH with and without charcoal block were bioequivalent; however, Spiriva HH AUC0-8h was lower when gastrointestinal absorption was inhibited with oral charcoal administration. CONCLUSIONS: Pharmacokinetic bioequivalence indicative of lung deposition and efficacy can be achieved by matching the reference product ISM. Due to reduced oral deposition and more efficient lung delivery, PUR0200 results in a lower AUC0-t than Spiriva HH due to reduced absorption of drug from the gastrointestinal tract.
Assuntos
Broncodilatadores/farmacocinética , Absorção Gastrointestinal , Mucosa Bucal/metabolismo , Brometo de Tiotrópio/farmacocinética , Administração por Inalação , Adulto , Área Sob a Curva , Broncodilatadores/administração & dosagem , Broncodilatadores/química , Estudos Cross-Over , Inaladores de Pó Seco , Feminino , Voluntários Saudáveis , Humanos , Masculino , Tamanho da Partícula , Projetos Piloto , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Equivalência Terapêutica , Brometo de Tiotrópio/administração & dosagem , Brometo de Tiotrópio/química , Adulto JovemRESUMO
Direct-acting antiviral inhibitors have revolutionized the treatment of hepatitis C virus (HCV) infected patients. Herein is described the discovery of velpatasvir (VEL, GS-5816), a potent pan-genotypic HCV NS5A inhibitor that is a component of the only approved pan-genotypic single-tablet regimens (STRs) for the cure of HCV infection. VEL combined with sofosbuvir (SOF) is Epclusa®, an STR with 98% cure-rates for genotype 1-6 HCV infected patients. Addition of the pan-genotypic HCV NS3/4A protease inhibitor voxilaprevir to SOF/VEL is the STR Vosevi®, which affords 97% cure-rates for genotype 1-6 HCV patients who have previously failed another treatment regimen.
Assuntos
Antivirais/farmacologia , Carbamatos/farmacologia , Descoberta de Drogas , Hepacivirus/efeitos dos fármacos , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Inibidores de Proteases/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Antivirais/síntese química , Antivirais/química , Carbamatos/síntese química , Carbamatos/química , Relação Dose-Resposta a Droga , Combinação de Medicamentos , Genótipo , Hepacivirus/genética , Compostos Heterocíclicos de 4 ou mais Anéis/síntese química , Compostos Heterocíclicos de 4 ou mais Anéis/química , Humanos , Compostos Macrocíclicos/química , Testes de Sensibilidade Microbiana , Estrutura Molecular , Inibidores de Proteases/síntese química , Inibidores de Proteases/química , Sofosbuvir/química , Relação Estrutura-Atividade , Sulfonamidas/química , Comprimidos/química , Comprimidos/farmacologia , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismoRESUMO
We hereby disclose the discovery of inhibitors of CaMKII (7h and 7i) that are highly potent in rat ventricular myocytes, selective against hERG and other off-target kinases, while possessing good CaMKII tissue isoform selectivity (cardiac γ/δ vs. neuronal α/ß). In vitro and in vivo ADME/PK studies demonstrated the suitability of these CaMKII inhibitors for PO (7h rat Fâ¯=â¯73%) and IV pharmacological studies.