Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-37205600

RESUMO

While circadian rhythms are entrained to the once daily light-dark cycle of the sun, many marine organisms exhibit ~12h ultradian rhythms corresponding to the twice daily movement of the tides. Although human ancestors emerged from circatidal environment millions of years ago, direct evidence of ~12h ultradian rhythms in humans is lacking. Here, we performed prospective, temporal transcriptome profiling of peripheral white blood cells and identified robust ~12h transcriptional rhythms from three healthy participants. Pathway analysis implicated ~12h rhythms in RNA and protein metabolism, with strong homology to the circatidal gene programs previously identified in Cnidarian marine species. We further observed ~12h rhythms of intron retention events of genes involved in MHC class I antigen presentation, synchronized to expression of mRNA splicing genes in all three participants. Gene regulatory network inference revealed XBP1, and GABP and KLF transcription factor family members as potential transcriptional regulators of human ~12h rhythms. These results suggest that human ~12h biological rhythms have a primordial evolutionary origin with important implications for human health and disease.

2.
Mol Metab ; 42: 101082, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32992039

RESUMO

OBJECTIVE: The human adaptive fasting response enables survival during periods of caloric deprivation. A crucial component of the fasting response is the shift from glucose metabolism to utilization of lipids, underscoring the importance of adipose tissue as the central lipid-storing organ. The objective of this study was to investigate the response of adipose tissue to a prolonged fast in humans. METHODS: We performed RNA sequencing of subcutaneous adipose tissue samples longitudinally collected during a 10-day, 0-calorie fast in humans. We further investigated observed transcriptional signatures utilizing cultured human monocytes and Thp1 cells. We examined the cellularity of adipose tissue biopsies with transmission electron microscopy and tested for associated changes in relevant inflammatory mediators in the systemic circulation by ELISA assays of longitudinally collected blood samples. RESULTS: Coincident with the expected shift away from glucose utilization and lipid storage, we demonstrated downregulation of pathways related to glycolysis, oxidative phosphorylation, and lipogenesis. The canonical lipolysis pathway was also downregulated, whereas fasting drove alternative lysosomal paths to lipid digestion. Unexpectedly, the dominant induced pathways were associated with immunity and inflammation, although this only became evident at the 10-day time point. Among the most augmented transcripts were those associated with macrophage identity and function, such as members of the erythroblast transformation-specific (ETS) transcription factor family. Key components of the macrophage transcriptional signal in fasting adipose tissue were recapitulated with induced expression of two of the ETS transcription factors via cultured macrophages, SPIC and SPI1. The inflammatory signal was further reflected by an increase in systemic inflammatory mediators. CONCLUSIONS: Collectively, this study demonstrates an unexpected role of metabolic inflammation in the human adaptive fasting response.


Assuntos
Tecido Adiposo/metabolismo , Jejum/metabolismo , Inflamação/metabolismo , Tecido Adiposo/imunologia , Adulto , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/fisiologia , Jejum/fisiologia , Feminino , Expressão Gênica/genética , Regulação da Expressão Gênica/genética , Humanos , Inflamação/imunologia , Insulina/metabolismo , Resistência à Insulina , Metabolismo dos Lipídeos/fisiologia , Lipogênese , Lipólise/fisiologia , Macrófagos , Masculino , Obesidade/metabolismo , Gordura Subcutânea/metabolismo , Fatores de Transcrição/metabolismo
3.
PLoS One ; 14(5): e0217553, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31141574

RESUMO

As the global population ages, and rates of dementia rise, understanding lifestyle factors that play a role in the development and acceleration of cognitive decline is vital to creating therapies and recommendations to improve quality of later life. Obesity has been shown to increase risk for dementia. However, the specific mechanisms for obesity-induced cognitive decline remain unclear. One potential contributor to diet-induced cognitive changes is neuroinflammation. Furthermore, a source of diet-induced inflammation to potentially increase neuroinflammation is via gut dysbiosis. We hypothesized that a high fat diet would cause gut microbe dysbiosis, and subsequently: neuroinflammation and cognitive decline. Using 7-month old male Sprague Dawley rats, this study examined whether 8 weeks on a high fat diet could impact performance on the water radial arm maze, gut microbe diversity and abundance, and microgliosis. We found that a high fat diet altered gut microbe populations compared to a low fat, control diet. However, we did not observe any significant differences between dietary groups on maze performance (a measure of spatial working memory) or microgliosis. Our data reveal a significant change to the gut microbiome without subsequent effects to neuroinflammation (as measured by microglia characterization and counts in the cortex, hippocampus, and hypothalamus) or cognitive performance under the parameters of our study. However, future studies that explore duration of the diet, composition of the diet, age of animal model, and strain of animal model, must be explored.


Assuntos
Envelhecimento/efeitos dos fármacos , Cognição/efeitos dos fármacos , Gorduras na Dieta/efeitos adversos , Microbioma Gastrointestinal/efeitos dos fármacos , Memória de Curto Prazo/efeitos dos fármacos , Memória Espacial/efeitos dos fármacos , Animais , Gorduras na Dieta/farmacologia , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa