Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Philos Trans R Soc Lond B Biol Sci ; 379(1904): 20230106, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38705194

RESUMO

Emerging technologies are increasingly employed in environmental citizen science projects. This integration offers benefits and opportunities for scientists and participants alike. Citizen science can support large-scale, long-term monitoring of species occurrences, behaviour and interactions. At the same time, technologies can foster participant engagement, regardless of pre-existing taxonomic expertise or experience, and permit new types of data to be collected. Yet, technologies may also create challenges by potentially increasing financial costs, necessitating technological expertise or demanding training of participants. Technology could also reduce people's direct involvement and engagement with nature. In this perspective, we discuss how current technologies have spurred an increase in citizen science projects and how the implementation of emerging technologies in citizen science may enhance scientific impact and public engagement. We show how technology can act as (i) a facilitator of current citizen science and monitoring efforts, (ii) an enabler of new research opportunities, and (iii) a transformer of science, policy and public participation, but could also become (iv) an inhibitor of participation, equity and scientific rigour. Technology is developing fast and promises to provide many exciting opportunities for citizen science and insect monitoring, but while we seize these opportunities, we must remain vigilant against potential risks. This article is part of the theme issue 'Towards a toolkit for global insect biodiversity monitoring'.


Assuntos
Ciência do Cidadão , Insetos , Animais , Ciência do Cidadão/métodos , Participação da Comunidade/métodos , Monitoramento Ambiental/métodos
2.
Ecol Evol ; 12(5): e8919, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35600696

RESUMO

Biodiversity loss, as often found in intensively managed agricultural landscapes, correlates with reduced ecosystem functioning, for example, pollination by insects, and with altered plant composition, diversity, and abundance. But how does this change in floral resource diversity and composition relate to occurrence and resource use patterns of trap-nesting solitary bees? To better understand the impact of land-use intensification on communities of trap-nesting solitary bees in managed grasslands, we investigated their pollen foraging, reproductive fitness, and the nutritional quality of larval food along a land-use intensity gradient in Germany. We found bee species diversity to decrease with increasing land-use intensity irrespective of region-specific community compositions and interaction networks. Land use also strongly affected the diversity and composition of pollen collected by bees. Lack of suitable pollen sources likely explains the absence of several bee species at sites of high land-use intensity. The only species present throughout, Osmia bicornis (red mason bee), foraged on largely different pollen sources across sites. In doing so, it maintained a relatively stable, albeit variable nutritional quality of larval diets (i.e., protein to lipid (P:L) ratio). The observed changes in bee-plant pollen interaction patterns indicate that only the flexible generalists, such as O. bicornis, may be able to compensate the strong alterations in floral resource landscapes and to obtain food of sufficient quality through readily shifting to alternative plant sources. In contrast, other, less flexible, bee species disappear.

3.
Philos Trans R Soc Lond B Biol Sci ; 377(1853): 20210171, 2022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35491605

RESUMO

Bee performance and well-being strongly depend on access to sufficient and appropriate resources, in particular pollen and nectar of flowers, which constitute the major basis of bee nutrition. Pollen-derived microbes appear to play an important but still little explored role in the plant pollen-bee interaction dynamics, e.g. through affecting quantities and ratios of important nutrients. To better understand how microbes in pollen collected by bees may affect larval health through nutrition, we investigated correlations between the floral, bacterial and nutritional composition of larval provisions and the gut bacterial communities of the solitary megachilid bee Osmia bicornis. Our study reveals correlations between the nutritional quality of pollen provisions and the complete bacterial community as well as individual members of both pollen provisions and bee guts. In particular pollen fatty acid profiles appear to interact with specific members of the pollen bacterial community, indicating that pollen-derived bacteria may play an important role in fatty acid provisioning. As increasing evidence suggests a strong effect of dietary fatty acids on bee performance, future work should address how the observed interactions between specific fatty acids and the bacterial community in larval provisions relate to health in O. bicornis. This article is part of the theme issue 'Natural processes influencing pollinator health: from chemistry to landscapes'.


Assuntos
Ácidos Graxos , Microbiota , Animais , Bactérias , Abelhas , Larva/microbiologia , Pólen/microbiologia
4.
Exp Ther Med ; 13(4): 1369-1375, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28413479

RESUMO

The effects of inhaled and intravenous application of a guanylate cyclase stimulator (BAY 41-8543) on pulmonary vascular resistance (PVR) and cardiac output (CO) were investigated in an experimental model of septic shock. Following induction of septic shock, anaesthetized pigs (n=31) were randomly place into two groups receiving different interventions. Animals in the first group received intravenous BAY 41-8543 (0.6 mg), inhalative BAY 41-8543 (6 mg) or a placebo. In the second group, the dosage of BAY 41-8543 was increased two-fold or combined with inhalation of nitric oxide (iNO). Intravenous and inhaled administration of BAY 41-8543 resulted in a significantly (P<0.05) reduced PVR and increased CO compared with the placebo. Increasing the dosage of BAY 41-8543 or combining it with iNO did not further decrease PVR. The results of the present study indicate that BAY 41-8543 effectively reduces PVR and increases CO in septic shock, through inhaled or intravenous routes of administration.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa