RESUMO
Rationale: Lymphopenia in coronavirus disease (COVID-19) is associated with increased mortality. Objectives: To explore the association between lymphopenia, host response aberrations, and mortality in patients with lymphopenic COVID-19. Methods: We determined 43 plasma biomarkers reflective of four pathophysiological domains: endothelial cell and coagulation activation, inflammation and organ damage, cytokine release, and chemokine release. We explored if decreased concentrations of lymphocyte-derived proteins in patients with lymphopenia were associated with an increase in mortality. We sought to identify host response phenotypes in patients with lymphopenia by cluster analysis of plasma biomarkers. Measurements and Main Results: A total of 439 general ward patients with COVID-19 were stratified by baseline lymphocyte counts: normal (>1.0 × 109/L; n = 167), mild lymphopenia (>0.5 to ⩽1.0 × 109/L; n = 194), and severe lymphopenia (⩽0.5 × 109/L; n = 78). Lymphopenia was associated with alterations in each host response domain. Lymphopenia was associated with increased mortality. Moreover, in patients with lymphopenia (n = 272), decreased concentrations of several lymphocyte-derived proteins (e.g., CCL5, IL-4, IL-13, IL-17A) were associated with an increase in mortality (at P < 0.01 or stronger significance levels). A cluster analysis revealed three host response phenotypes in patients with lymphopenia: "hyporesponsive" (23.2%), "hypercytokinemic" (36.4%), and "inflammatory-injurious" (40.4%), with substantially differing mortality rates of 9.5%, 5.1%, and 26.4%, respectively. A 10-biomarker model accurately predicted these host response phenotypes in an external cohort with similar mortality distribution. The inflammatory-injurious phenotype showed a remarkable combination of relatively high inflammation and organ damage markers with high antiinflammatory cytokine levels yet low proinflammatory cytokine levels. Conclusions: Lymphopenia in COVID-19 signifies a heterogenous group of patients with distinct host response features. Specific host responses contribute to lymphopenia-associated mortality in COVID-19, including reduced CCL5 levels.
Assuntos
Anemia , COVID-19 , Linfopenia , Humanos , COVID-19/complicações , SARS-CoV-2 , Linfopenia/complicações , Citocinas , Inflamação/complicações , Biomarcadores , Anemia/complicaçõesRESUMO
Rationale: The plasma lipidome has the potential to reflect many facets of the host status during severe infection. Previous work is limited to specific lipid groups or was focused on lipids as prognosticators.Objectives: To map the plasma lipidome during sepsis due to community-acquired pneumonia (CAP) and determine the disease specificity and associations with clinical features.Methods: We analyzed 1,833 lipid species across 33 classes in 169 patients admitted to the ICU with sepsis due to CAP, 51 noninfected ICU patients, and 48 outpatient controls. In a paired analysis, we reanalyzed patients still in the ICU 4 days after admission (n = 82).Measurements and Main Results: A total of 58% of plasma lipids were significantly lower in patients with CAP-attributable sepsis compared with outpatient controls (6% higher, 36% not different). We found strong lipid class-specific associations with disease severity, validated across two external cohorts, and inflammatory biomarkers, in which triacylglycerols, cholesterol esters, and lysophospholipids exhibited the strongest associations. A total of 36% of lipids increased over time, and stratification by survival revealed diverging lipid recovery, which was confirmed in an external cohort; specifically, a 10% increase in cholesterol ester levels was related to a lower odds ratio (0.84; P = 0.006) for 30-day mortality (absolute mortality, 18 of 82). Comparison with noninfected ICU patients delineated a substantial common illness response (57.5%) and a distinct lipidomic signal for patients with CAP-attributable sepsis (37%).Conclusions: Patients with sepsis due to CAP exhibit a time-dependent and partially disease-specific shift in their plasma lipidome that correlates with disease severity and systemic inflammation and is associated with higher mortality.
Assuntos
Infecções Comunitárias Adquiridas , Pneumonia , Sepse , Humanos , Lipidômica , Pneumonia/complicações , Sepse/complicações , Lipídeos , Índice de Gravidade de Doença , Unidades de Terapia IntensivaRESUMO
BACKGROUND: The immunological determinants of delayed viral clearance and intrahost viral evolution that drive the development of new pathogenic virus strains in immunocompromised individuals are unknown. Therefore, we longitudinally studied severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific immune responses in relation to viral clearance and evolution in immunocompromised individuals. METHODS: Among Omicron-infected immunocompromised individuals, we determined SARS-CoV-2-specific T- and B-cell responses, anti-spike immunoglobulin G (IgG) and IgG3 titers, neutralization titers, and monoclonal antibody (mAb) resistance-associated mutations. The 28-day post-enrollment nasopharyngeal specimen defined early (reverse-transcription polymerase chain reaction [RT-PCR] negative ≤28 days) or late (RT-PCR positive >28 days) viral clearance. RESULTS: Of 30 patients included (median age, 61.9 [interquartile range, 47.4-72.3] years; 50% females), 20 (66.7%) received mAb therapy. Thirteen (43.3%) demonstrated early and 17 (56.7%) late viral clearance. Patients with early viral clearance and patients without resistance-associated mutations had significantly higher baseline interferon-γ release, and patients with early viral clearance had a higher frequency of SARS-CoV-2-specific B cells at baseline. In non-mAb-treated patients, day 7 IgG and neutralization titers were significantly higher in those with early versus late viral clearance. CONCLUSIONS: An early robust adaptive immune response is vital for efficient viral clearance and associated with less emergence of mAb resistance-associated mutations in Omicron-infected immunocompromised patients. This emphasizes the importance of early SARS-CoV-2-specific T- and B-cell responses and thereby provides a rationale for development of novel therapeutic approaches.
Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Linfócitos B , COVID-19 , Hospedeiro Imunocomprometido , Imunoglobulina G , SARS-CoV-2 , Linfócitos T , Humanos , SARS-CoV-2/imunologia , COVID-19/imunologia , COVID-19/virologia , Pessoa de Meia-Idade , Feminino , Masculino , Linfócitos B/imunologia , Idoso , Linfócitos T/imunologia , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/sangue , Glicoproteína da Espícula de Coronavírus/imunologia , Carga Viral , Estudos Longitudinais , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais/imunologiaRESUMO
Kidneys donated after circulatory death (DCD) perform similarly to kidneys donated after brain death (DBD). However, the respective incidences of delayed graft function (DGF) differ. This questions the donor type-specific impact of early graft function on long-term outcomes. Using competing risk and Cox-regression analysis, we compared death-censored graft loss between types of early graft function: DGF (temporary dialysis dependency started within 7 days after transplantation), slow graft function (3-day plasma creatinine decline less than 10% per day), and immediate graft function. In 1061 DBD and 1605 DCD graft recipients (January 2014 until January 2023), graft survival was similar. DGF was associated with death-censored graft loss in DBD and DCD (adjusted hazard ratios: DGF in DBD: 1.79 [1.04-2.91], P = .027, DGF in DCD: 1.84 [1.18-2.87], P = .008; Reference: no DGF). Slow graft function was associated with death-censored graft loss in DBD, but not significantly in DCD (adjusted hazard ratios DBD: 2.82 (1.34-5.93), P = .007, and DCD: 1.54 (0.72-3.35), P = .262; Reference: immediate graft function). Early graft dysfunction has a differential impact on graft outcome in DBD and DCD. The differences between DBD and DCD should be accounted for in research and the clinic.
RESUMO
BACKGROUND: Sepsis is a life-threatening condition arising from an aberrant host response to infection. Recent single-cell RNA sequencing investigations identified an immature bone-marrow-derived CD14+ monocyte phenotype with immune suppressive properties termed "monocyte state 1" (MS1) in patients with sepsis. Our objective was to determine the association of MS1 cell profiles with disease presentation, outcomes, and host response characteristics. METHODS: We used the transcriptome deconvolution method (CIBERSORTx) to estimate the percentage of MS1 cells from blood RNA profiles of patients with sepsis admitted to the intensive care unit (ICU). We compared these profiles to ICU patients without infection and to healthy controls. Host response dysregulation was further studied by gene co-expression network and gene set enrichment analyses of blood leukocytes, and measurement of 15 plasma biomarkers indicative of pathways implicated in sepsis pathogenesis. RESULTS: Sepsis patients (n = 332) were divided into three equally-sized groups based on their MS1 cell levels (low, intermediate, and high). MS1 groups did not differ in demographics or comorbidities. The intermediate and high MS1 groups presented with higher disease severity and more often had shock. MS1 cell abundance did not differ between survivors and non-survivors, or between patients who did or did not acquire a secondary infection. Higher MS1 cell percentages were associated with downregulation of lymphocyte-related and interferon response genes in blood leukocytes, with concurrent upregulation of inflammatory response pathways, including tumor necrosis factor signaling via nuclear factor-κB. Previously described sepsis host response transcriptomic subtypes showed different MS1 cell abundances, and MS1 cell percentages positively correlated with the "quantitative sepsis response signature" and "molecular degree of perturbation" scores. Plasma biomarker levels, indicative of inflammation, endothelial cell activation, and coagulation activation, were largely similar between MS1 groups. In ICU patients without infection (n = 215), MS1 cell percentages and their relation with disease severity, shock, and host response dysregulation were highly similar to those in sepsis patients. CONCLUSIONS: High MS1 cell percentages are associated with increased disease severity and shock in critically ill patients with sepsis or a non-infectious condition. High MS1 cell abundance likely indicates broad immune dysregulation, entailing not only immunosuppression but also anomalies reflecting exaggerated inflammatory responses.
Assuntos
Monócitos , Sepse , Humanos , Estado Terminal , Sepse/complicações , Biomarcadores , Leucócitos , Unidades de Terapia IntensivaRESUMO
BACKGROUND: Coronavirus disease 2019 (COVID-19)-induced mortality occurs predominantly in older patients. Several immunomodulating therapies seem less beneficial in these patients. The biological substrate behind these observations is unknown. The aim of this study was to obtain insight into the association between ageing, the host response and mortality in patients with COVID-19. METHODS: We determined 43 biomarkers reflective of alterations in four pathophysiological domains: endothelial cell and coagulation activation, inflammation and organ damage, and cytokine and chemokine release. We used mediation analysis to associate ageing-driven alterations in the host response with 30-day mortality. Biomarkers associated with both ageing and mortality were validated in an intensive care unit and external cohort. RESULTS: 464 general ward patients with COVID-19 were stratified according to age decades. Increasing age was an independent risk factor for 30-day mortality. Ageing was associated with alterations in each of the host response domains, characterised by greater activation of the endothelium and coagulation system and stronger elevation of inflammation and organ damage markers, which was independent of an increase in age-related comorbidities. Soluble tumour necrosis factor receptor 1, soluble triggering receptor expressed on myeloid cells 1 and soluble thrombomodulin showed the strongest correlation with ageing and explained part of the ageing-driven increase in 30-day mortality (proportion mediated: 13.0%, 12.9% and 12.6%, respectively). CONCLUSIONS: Ageing is associated with a strong and broad modification of the host response to COVID-19, and specific immune changes likely contribute to increased mortality in older patients. These results may provide insight into potential age-specific immunomodulatory targets in COVID-19.
Assuntos
COVID-19 , Humanos , Idoso , Biomarcadores , Inflamação , Citocinas , EnvelhecimentoRESUMO
AIMS: Ischemia-reperfusion injury (IRI) during kidney transplant procedures is associated with adverse outcome. Alkaline phosphatase (AP) is an enzyme that has the potential to dampen IRI. Prior to this study, it had not been tested in the setting of kidney transplantation. This study aimed to evaluate the safety and feasibility of peri-procedural AP administration in living donor kidney transplantation. METHODS: In this double blind, randomized, placebo-controlled, single-center pilot study, all eligible recipients of living donor kidneys were asked to give informed consent. AP (bRESCAP) or a placebo was administered intravenously over 24 hours after the transplantation procedure. The primary outcome-graft function at 1 year-was represented by iohexol measured glomerular filtration rate (mGFR). Serum and urine biomarkers within seven days after surgery were used as surrogate markers of kidney function and injury. RESULTS: Eleven patients were enrolled of whom five were treated with bRESCAP and six with placebo. After 1 year, mGFR was not different between groups. No specific adverse events were observed in the bRESCAP group. Urine expression of injury biomarkers CCL14, NGAL and Cystatin C was lower in the bRESCAP group at day seven. This was statistically significant. CONCLUSION: This study illustrates that bRESCAP treatment is feasible in kidney transplantation, might have a dampening effect on IRI induced renal inflammation, and raises no safety concerns. Future research will evaluate the effects of bRESCAP treatment in donation after circulatory death kidney transplantation where IRI is more pronounced.
Assuntos
Transplante de Rim , Traumatismo por Reperfusão , Humanos , Transplante de Rim/efeitos adversos , Fosfatase Alcalina , Projetos Piloto , Doadores Vivos , Estudos de Viabilidade , Rim , Traumatismo por Reperfusão/etiologia , BiomarcadoresRESUMO
BACKGROUND: Immune suppression has been implicated in the occurrence of pneumonia in critically ill patients. We tested the hypothesis that Intensive Care Unit (ICU)-acquired pneumonia is associated with broad host immune aberrations in the trajectory to pneumonia, encompassing inflammatory, endothelial and coagulation responses. We compared plasma protein biomarkers reflecting the systemic host response in critically ill patients who acquire a new pneumonia (cases) with those who do not (controls). METHODS: We performed a nested case-control study in patients undergoing mechanical ventilation at ICU admission with an expected stay of at least 48 h enrolled in 30 hospitals in 11 European countries. Nineteen host response biomarkers reflective of key pathophysiological domains were measured in plasma obtained on study inclusion and day 7, and-in cases-on the day of pneumonia diagnosis. RESULTS: Of 1997 patients, 316 developed pneumonia (15.8%) and 1681 did not (84.2%). Plasma protein biomarker analyses, performed in cases and a randomly selected subgroup of controls (1:2 ratio to cases, n = 632), demonstrated considerable variation across time points and patient groups. Yet, cases showed biomarker concentrations suggestive of enhanced inflammation and a more disturbed endothelial barrier function, both at study enrollment (median 2 days after ICU admission) and in the path to pneumonia diagnosis (median 5 days after ICU admission). Baseline host response biomarker aberrations were most profound in patients who developed pneumonia either shortly (< 5 days, n = 105) or late (> 10 days, n = 68) after ICU admission. CONCLUSIONS: Critically ill patients who develop an ICU-acquired pneumonia, compared with those who do not, display alterations in plasma protein biomarker concentrations indicative of stronger proinflammatory, procoagulant and (injurious) endothelial cell responses. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT02413242, posted April 9th, 2015.
Assuntos
Estado Terminal , Pneumonia , Humanos , Estudos de Casos e Controles , Unidades de Terapia Intensiva , Proteínas Sanguíneas , BiomarcadoresRESUMO
BACKGROUND: The aetiology of idiopathic nephrotic syndrome (INS) remains partially unknown. Viral infections have been associated with INS onset. Since we observed fewer first onset INS cases during the Covid-19 pandemic, we hypothesised that lower INS incidence was the result of lockdown measures. Therefore, the aim of this study was to evaluate the incidence of childhood INS before and during the COVID-19 pandemic in two independent European INS cohorts. METHODS: Children with new INS in the Netherlands (2018-2021) and Paris area (2018-2021) were included. We estimated incidences using census data for each region. Incidences were compared using two proportion Z-tests. RESULTS: A total of 128 and 324 cases of first onset INS were reported in the Netherlands and Paris area, respectively, corresponding to an annual incidence of 1.21 and 2.58 per 100,000 children/year. Boys and young children (< 7 years) were more frequently affected. Incidence before and during the pandemic did not differ. When schools were closed, incidence was lower in both regions: 0.53 vs. 1.31 (p = 0.017) in the Netherlands and 0.94 vs. 2.63 (p = 0.049) in the Paris area. During peaks of hospital admissions for Covid-19, no cases were reported in the Netherlands or Paris area. CONCLUSIONS: Incidence of INS before and during the Covid-19 pandemic was not different, but when schools were closed during lockdown, incidence was significantly lower. Interestingly, incidences of other respiratory viral infections were also reduced as was air pollution. Together, these results argue for a link between INS onset and viral infections and/or environmental factors. A higher resolution version of the Graphical abstract is available as Supplementary information.
Assuntos
COVID-19 , Nefrose Lipoide , Síndrome Nefrótica , Criança , Masculino , Humanos , Pré-Escolar , Síndrome Nefrótica/epidemiologia , Síndrome Nefrótica/complicações , COVID-19/epidemiologia , COVID-19/complicações , Incidência , Paris/epidemiologia , Países Baixos/epidemiologia , Controle de Doenças Transmissíveis , Nefrose Lipoide/complicações , FrançaRESUMO
Pneumonia caused by multi-drug-resistant Klebsiella pneumoniae (MDR-Kpneu) poses a major public health threat, especially to immunocompromised or hospitalized patients. This study aimed to determine the immunostimulatory effect of the Toll-like receptor 5 ligand flagellin on primary human lung epithelial cells during infection with MDR-Kpneu. Human bronchial epithelial (HBE) cells, grown on an air-liquid interface, were inoculated with MDR-Kpneu on the apical side and treated during ongoing infection with antibiotics (meropenem) and/or flagellin on the basolateral and apical side, respectively; the antimicrobial and inflammatory effects of flagellin were determined in the presence or absence of meropenem. In the absence of meropenem, flagellin treatment of MDR-Kpneu-infected HBE cells increased the expression of antibacterial defense genes and the secretion of chemokines; moreover, supernatants of flagellin-exposed HBE cells activated blood neutrophils and monocytes. However, in the presence of meropenem, flagellin did not augment these responses compared to meropenem alone. Flagellin did not impact the outgrowth of MDR-Kpneu. Flagellin enhances antimicrobial gene expression and chemokine release by the MDR-Kpneu-infected primary human bronchial epithelium, which is associated with the release of mediators that activate neutrophils and monocytes. Topical flagellin therapy may have potential to boost immune responses in the lung during pneumonia.
Assuntos
Klebsiella , Pneumonia , Humanos , Flagelina/farmacologia , Meropeném/farmacologia , Células Epiteliais , Antibacterianos/farmacologiaRESUMO
BACKGROUND: Strongly elevated ferritin levels have been proposed to reflect systemic hyperinflammation in patients admitted to the intensive care unit. Knowledge of the incidence and pathophysiological implications of hyperferritinemia in patients with acute infection admitted to a non-intensive care setting is limited. METHODS: We determined the association between hyperferritinemia, defined by 2 cutoff values (500 and 250 ng/mL), and aberrations in key host response mechanisms among patients with community-acquired pneumonia (CAP) on admission to a general hospital ward (clinicaltrials.gov NCT02928367; trialregister.nl NTR6163). RESULTS: Plasma ferritin levels were higher in patients with CAP (nâ =â 174; median [interquartile ranges], 259.5 [123.1-518.3] ng/mL) than in age- and sex-matched controls without infection (nâ =â 50; 102.8 [53.5-185.7] ng/mL); Pâ <â .001); they were ≥500 ng/mL in 46 patients (26%) and ≥250 ng/mL in 90 (52%). Measurements of 26 biomarkers reflective of distinct pathophysiological domains showed that hyperferritinemia was associated with enhanced systemic inflammation, neutrophil activation, cytokine release, endothelial cell activation and dysfunction, and activation of the coagulation system. Results were robust across different cutoff values. CONCLUSIONS: Hyperferritinemia identifies patients with CAP with a broad deregulation of various host response mechanisms implicated in the pathogenesis of sepsis. This could inform future therapeutic strategies targeting subgroups within the CAP population.
Assuntos
Infecções Comunitárias Adquiridas , Hiperferritinemia , Pneumonia , Ferritinas , Humanos , Unidades de Terapia Intensiva , Pneumonia/complicaçõesRESUMO
BACKGROUND: Viruses and bacteria from the nasopharynx are capable of causing community-acquired pneumonia (CAP), which can be difficult to diagnose. We aimed to investigate whether shifts in the composition of these nasopharyngeal microbial communities can be used as diagnostic biomarkers for CAP in adults. METHODS: We collected nasopharyngeal swabs from adult CAP patients and controls without infection in a prospective multicenter case-control study design. We generated bacterial and viral profiles using 16S ribosomal RNA gene sequencing and multiplex polymerase chain reaction (PCR), respectively. Bacterial, viral, and clinical data were subsequently used as inputs for extremely randomized trees classification models aiming to distinguish subjects with CAP from healthy controls. RESULTS: We enrolled 117 cases and 48 control subjects. Cases displayed significant beta diversity differences in nasopharyngeal microbiota (Pâ =â .016, R2 = .01) compared to healthy controls. Our extremely randomized trees classification models accurately discriminated CAP caused by bacteria (area under the curve [AUC] .83), viruses (AUC .95) or mixed origin (AUC .81) from healthy control subjects. We validated this approach using a dataset of nasopharyngeal samples from 140 influenza patients and 38 controls, which yielded highly accurate (AUC .93) separation between cases and controls. CONCLUSIONS: Relative proportions of different bacteria and viruses in the nasopharynx can be leveraged to diagnose CAP and identify etiologic agent(s) in adult patients. Such data can inform the development of a microbiota-based diagnostic panel used to identify CAP patients and causative agents from nasopharyngeal samples, potentially improving diagnostic specificity, efficiency, and antimicrobial stewardship practices.
Assuntos
Infecções Comunitárias Adquiridas , Microbiota , Infecções Respiratórias , Adulto , Bactérias/genética , Estudos de Casos e Controles , Infecções Comunitárias Adquiridas/diagnóstico , Humanos , Microbiota/genética , Nasofaringe/microbiologia , Estudos Prospectivos , Sistema Respiratório/microbiologiaRESUMO
BACKGROUND: Imatinib reduced 90-day mortality in hospitalised coronavirus disease 2019 (COVID-19) patients in a recent clinical trial, but the biological effects that cause improved clinical outcomes are unknown. We aimed to determine the biological changes elicited by imatinib in patients with COVID-19 and what baseline biological profile moderates the effect of imatinib. METHODS: We undertook a secondary analysis of a randomised, double-blind, placebo-controlled trial of oral imatinib in hospitalised, hypoxaemic COVID-19 patients. Mediating effects of changes in plasma concentration of 25 plasma host response biomarkers on the association between randomisation group and 90-day mortality were studied by combining linear mixed effect modelling and joint modelling. Moderation of baseline biomarker concentrations was evaluated by Cox regression modelling. We identified subphenotypes using Ward's method clustering and evaluated moderation of these subphenotypes using the aforementioned method. RESULTS: 332 out of 385 participants had plasma samples available. Imatinib increased the concentration of surfactant protein D (SP-D), and decreased the concentration of interleukin-6, procalcitonin, angiopoietin (Ang)-2/Ang-1 ratio, E-selectin, tumour necrosis factor (TNF)-α, and TNF receptor I. The effect of imatinib on 90-day mortality was fully mediated by changes in these biomarkers. Cluster analysis revealed three host response subphenotypes. Mortality benefit of imatinib was only present in the subphenotype characterised by alveolar epithelial injury indicated by increased SP-D levels in the context of systemic inflammation and endothelial dysfunction (hazard ratio 0.30, 95% CI 0.10-0.92). CONCLUSIONS: The effect of imatinib on mortality in hospitalised COVID-19 patients is mediated through modulation of innate immune responses and reversal of endothelial dysfunction, and possibly moderated by biological subphenotypes.
Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19 , Mesilato de Imatinib , Imunomodulação , Humanos , Biomarcadores , COVID-19/mortalidade , Mesilato de Imatinib/uso terapêutico , Proteína D Associada a Surfactante PulmonarRESUMO
BACKGROUND: Gram-positive and Gram-negative bacteria are the most common causative pathogens in community-acquired pneumonia (CAP) on the intensive care unit (ICU). The aim of this study was to determine whether the host immune response differs between Gram-positive and Gram-negative CAP upon ICU admission. METHODS: 16 host response biomarkers providing insight into pathophysiological mechanisms implicated in sepsis and blood leukocyte transcriptomes were analysed in patients with CAP upon ICU admission in two tertiary hospitals in the Netherlands. RESULTS: 309 patients with CAP with a definite or probable likelihood (determined by predefined criteria) were included. A causative pathogen was determined in 74.4% of admissions. Patients admitted with Gram-positive CAP (n=90) were not different from those admitted with Gram-negative CAP (n=75) regarding demographics, chronic comorbidities, severity of disease and mortality. Host response biomarkers reflective of systemic inflammation, coagulation activation and endothelial cell function, as well as blood leukocyte transcriptomes, were largely similar between Gram-positive and Gram-negative CAP. Blood leukocyte transcriptomes were also similar in Gram-positive and Gram-negative CAP in two independent validation cohorts. On a pathogen-specific level, Streptococcus pneumoniae and Escherichia coli induced the most distinct host immune response. CONCLUSION: Outcome and host response are similar in critically ill patients with CAP due to Gram-positive bacteria compared with Gram-negative bacteria.
Assuntos
Infecções Comunitárias Adquiridas , Pneumonia Bacteriana , Pneumonia , Antibacterianos/uso terapêutico , Infecções Comunitárias Adquiridas/genética , Infecções Comunitárias Adquiridas/microbiologia , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Humanos , Leucócitos , Pneumonia/tratamento farmacológico , Pneumonia Bacteriana/tratamento farmacológico , TranscriptomaRESUMO
BACKGROUND: Immunomodulatory therapies that improve the outcome of sepsis are not available. We sought to determine whether treatment of critically ill patients with sepsis with low-dose erythromycin-a macrolide antibiotic with broad immunomodulatory effects-decreased mortality and ameliorated underlying disease pathophysiology. METHODS: We conducted a target trial emulation, comparing patients with sepsis admitted to two intensive care units (ICU) in the Netherlands for at least 72 h, who were either exposed or not exposed during this period to treatment with low-dose erythromycin (up to 600 mg per day, administered as a prokinetic agent) but no other macrolides. We used two common propensity score methods (matching and inverse probability of treatment weighting) to deal with confounding by indication and subsequently used Cox regression models to estimate the treatment effect on the primary outcome of mortality rate up to day 90. Secondary clinical outcomes included change in SOFA, duration of mechanical ventilation and the incidence of ICU-acquired infections. We used linear mixed models to assess differences in 15 host response biomarkers reflective of key pathophysiological processes from admission to day 4. RESULTS: In total, 235 patients started low-dose erythromycin treatment, 470 patients served as controls. Treatment started at a median of 38 [IQR 25-52] hours after ICU admission for a median of 5 [IQR 3-8] total doses in the first course. Matching and weighting resulted in populations well balanced for proposed confounders. We found no differences between patients treated with low-dose erythromycin and control subjects in mortality rate up to day 90: matching HR 0.89 (95% CI 0.64-1.24), weighting HR 0.95 (95% CI 0.66-1.36). There were no differences in secondary clinical outcomes. The change in host response biomarker levels from admission to day 4 was similar between erythromycin-treated and control subjects. CONCLUSION: In this target trial emulation in critically ill patients with sepsis, we could not demonstrate an effect of treatment with low-dose erythromycin on mortality, secondary clinical outcomes or host response biomarkers.
Assuntos
Estado Terminal , Sepse , Biomarcadores , Ensaios Clínicos como Assunto , Estado Terminal/terapia , Eritromicina/farmacologia , Eritromicina/uso terapêutico , Humanos , Unidades de Terapia Intensiva , Sepse/tratamento farmacológicoRESUMO
BACKGROUND: The association of ageing with increased sepsis mortality is well established. Nonetheless, current investigations on the influence of age on host response aberrations are largely limited to plasma cytokine levels while neglecting other pathophysiological sepsis domains like endothelial cell activation and function, and coagulation activation. The primary objective of this study was to gain insight into the association of ageing with aberrations in key host response pathways and blood transcriptomes in sepsis. METHODS: We analysed the clinical outcome (n = 1952), 16 plasma biomarkers providing insight in deregulation of specific pathophysiological domains (n = 899), and blood leukocyte transcriptomes (n = 488) of sepsis patients stratified according to age decades. Blood transcriptome results were validated in an independent sepsis cohort and compared with healthy individuals. RESULTS: Older age was associated with increased mortality independent of comorbidities and disease severity. Ageing was associated with lower endothelial cell activation and dysfunction, and similar inflammation and coagulation activation, despite higher disease severity scores. Blood leukocytes of patients ≥ 70 years, compared to patients < 50 years, showed decreased expression of genes involved in cytokine signaling, and innate and adaptive immunity, and increased expression of genes involved in hemostasis and endothelial cell activation. The diminished expression of gene pathways related to innate immunity and cytokine signaling in subjects ≥ 70 years was sepsis-induced, as healthy subjects ≥ 70 years showed enhanced expression of these pathways compared to healthy individuals < 50 years. CONCLUSIONS: This study provides novel evidence that older age is associated with relatively mitigated sepsis-induced endothelial cell activation and dysfunction, and a blood leukocyte transcriptome signature indicating impaired innate immune and cytokine signaling. These data suggest that age should be considered in patient selection in future sepsis trials targeting the immune system and/or the endothelial cell response.
Assuntos
Estado Terminal , Sepse , Humanos , Sepse/complicações , Citocinas , Biomarcadores , Células Endoteliais/metabolismoRESUMO
BACKGROUND: Primary hyperoxaluria type 1 (PH1) is an inborn error of glyoxylate metabolism, characterized by increased endogenous oxalate production. The metabolic pathways underlying oxalate synthesis have not been fully elucidated, and upcoming therapies require more reliable outcome parameters than the currently used plasma oxalate levels and urinary oxalate excretion rates. We therefore developed a stable isotope infusion protocol to assess endogenous oxalate synthesis rate and the contribution of glycolate to both oxalate and glycine synthesis in vivo . METHODS: Eight healthy volunteers and eight patients with PH1 (stratified by pyridoxine responsiveness) underwent a combined primed continuous infusion of intravenous [1- 13 C]glycolate, [U- 13 C 2 ]oxalate, and, in a subgroup, [D 5 ]glycine. Isotopic enrichment of 13 C-labeled oxalate and glycolate were measured using a new gas chromatography-tandem mass spectrometry (GC-MS/MS) method. Stable isotope dilution and incorporation calculations quantified rates of appearance and synthetic rates, respectively. RESULTS: Total daily oxalate rates of appearance (mean [SD]) were 2.71 (0.54), 1.46 (0.23), and 0.79 (0.15) mmol/d in patients who were pyridoxine unresponsive, patients who were pyridoxine responsive, and controls, respectively ( P =0.002). Mean (SD) contribution of glycolate to oxalate production was 47.3% (12.8) in patients and 1.3% (0.7) in controls. Using the incorporation of [1- 13 C]glycolate tracer in glycine revealed significant conversion of glycolate into glycine in pyridoxine responsive, but not in patients with PH1 who were pyridoxine unresponsive. CONCLUSIONS: This stable isotope infusion protocol could evaluate efficacy of new therapies, investigate pyridoxine responsiveness, and serve as a tool to further explore glyoxylate metabolism in humans.
Assuntos
Hiperoxalúria Primária , Hiperoxalúria , Humanos , Oxalatos/metabolismo , Espectrometria de Massas em Tandem , Piridoxina , Hiperoxalúria Primária/metabolismo , Glicolatos/urina , Glicina , GlioxilatosRESUMO
OBJECTIVES: Plasma ferritin levels above 4,420 ng/mL have been proposed as a diagnostic marker for macrophage activation-like syndrome in sepsis and used for selection of sepsis patients for anti-inflammatory therapy. We here sought to determine the frequency, presentation, outcome, and host response aberrations of macrophage activation-like syndrome, as defined by admission ferritin levels above 4,420 ng/mL, in critically ill patients with community-acquired pneumonia. DESIGN: A prospective observational cohort study. SETTING: ICUs in two tertiary hospitals in the Netherlands. PATIENTS: One hundred fifty-three patients admitted with community-acquired pneumonia. MEASUREMENTS AND MAIN RESULTS: Patients were stratified in community-acquired pneumonia-macrophage activation-like syndrome (n = 15; 9.8%) and community-acquired pneumonia-control groups (n = 138; 90.2%) based on an admission plasma ferritin level above or below 4,420 ng/mL, respectively. Community-acquired pneumonia-macrophage activation-like syndrome patients presented with a higher disease severity and had a higher ICU mortality (46.7% vs 12.3% in community-acquired pneumonia-controls; p = 0.002). Twenty-three plasma biomarkers indicative of dysregulation of key host response pathways implicated in sepsis pathogenesis (systemic inflammation, cytokine responses, endothelial cell activation, and barrier function, coagulation activation) were more disturbed in community-acquired pneumonia-macrophage activation-like syndrome patients. Hematologic malignancies were overrepresented in community-acquired pneumonia-macrophage activation-like syndrome patients (33.3% vs 5.1% in community-acquired pneumonia-controls; p = 0.001). In a subgroup analysis excluding patients with hematologic malignancies (n = 141), differences in mortality were not present anymore, but the exaggerated host response abnormalities in community-acquired pneumonia-macrophage activation-like syndrome patients remained. CONCLUSIONS: Macrophage activation-like syndrome in critically ill patients with community-acquired pneumonia occurs more often in patients with hematologic malignancies and is associated with deregulation of multiple host response pathways.
Assuntos
Infecções Comunitárias Adquiridas/sangue , Estado Terminal/terapia , Ferritinas/sangue , Ativação de Macrófagos , Pneumonia Bacteriana/sangue , Idoso , Biomarcadores/sangue , Estudos de Coortes , Infecções Comunitárias Adquiridas/terapia , Humanos , Unidades de Terapia Intensiva , Masculino , Pessoa de Meia-Idade , Países Baixos , Pneumonia Bacteriana/terapia , Estudos Prospectivos , Índice de Gravidade de DoençaRESUMO
BACKGROUND: We investigated 10-year trends in deceased donor kidney quality expressed as the kidney donor risk index (KDRI) and subsequent effects on survival outcomes in a European transplant population. METHODS: Time trends in the crude and standardized KDRI between 2005 and 2015 by recipient age, sex, diabetic status and country were examined in 24 177 adult kidney transplant recipients in seven European countries. We determined 5-year patient and graft survival probabilities and the risk of death and graft loss by transplant cohort (Cohort 1: 2005-06, Cohort 2: 2007-08, Cohort 3: 2009-10) and KDRI quintile. RESULTS: The median crude KDRI increased by 1.3% annually, from 1.31 [interquartile range (IQR) 1.08-1.63] in 2005 to 1.47 (IQR 1.16-1.90) in 2015. This increase, i.e. lower kidney quality, was driven predominantly by increases in donor age, hypertension and donation after circulatory death. With time, the gap between the median standardized KDRI in the youngest (18-44 years) and oldest (>65 years) recipients widened. There was no difference in the median standardized KDRI by recipient sex. The median standardized KDRI was highest in Austria, the Netherlands and the Basque Country (Spain). Within each transplant cohort, the 5-year patient and graft survival probability were higher for the lowest KDRIs. There was no difference in the patient and graft survival outcomes across transplant cohorts, however, over time the survival probabilities for the highest KDRIs improved. CONCLUSIONS: The overall quality of deceased donor kidneys transplanted between 2005 and 2015 has decreased and varies between age groups and countries. Overall patient and graft outcomes remain unchanged.
Assuntos
Transplante de Rim , Adulto , Ácido Edético , Europa (Continente)/epidemiologia , Sobrevivência de Enxerto , Humanos , Rim , Sistema de Registros , Doadores de TecidosRESUMO
Increasing numbers of elderly (≥65 years) patients are listed for kidney transplantation. This study compares the survival outcome between living (LDK), regularly allocated (ETKAS), and Eurotransplant Senior Program (ESP) donor kidneys in elderly recipients. This is a single-center retrospective cohort study of elderly kidney transplant recipients transplanted between 2005 and 2017. Primary outcome measures were nondeath-censored graft, death-censored graft, and patient survival. In total, 348 patients were transplanted, 109 recipients (31.3%) received an LDK, 100 (28.7%) an ETKAS, and 139 (40%) an ESP kidney. 62.5% were male, and median age was 68 years. LDK recipients had significantly better 5-year nondeath-censored graft survival compared with ETKAS and ESP (resp. 71.0% vs. 66.1% vs. 55.6%, P = 0.047). Death-censored graft survival after 1 year was significantly better in LDK recipients (99.1%) (ETKAS 90.8%; ESP 87.7%, P < 0.001). After 5 years, the difference remained significant (P < 0.001) with little additional graft loss (97.7% vs. 88.1% vs. 85.6). There was no significant difference in patient survival after 5 years (71.7% vs. 67.4% vs 61.9%, P = 0.480). In elderly recipients, the patient survival benefits of an LDK are limited, but there is decreased death-censored graft loss for LDK recipients. Nevertheless, graft survival in ETKAS and ESP remains satisfactory.