Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(25): e2220007120, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37307485

RESUMO

What constitutes a habitable planet is a frontier to be explored and requires pushing the boundaries of our terracentric viewpoint for what we deem to be a habitable environment. Despite Venus' 700 K surface temperature being too hot for any plausible solvent and most organic covalent chemistry, Venus' cloud-filled atmosphere layers at 48 to 60 km above the surface hold the main requirements for life: suitable temperatures for covalent bonds; an energy source (sunlight); and a liquid solvent. Yet, the Venus clouds are widely thought to be incapable of supporting life because the droplets are composed of concentrated liquid sulfuric acid-an aggressive solvent that is assumed to rapidly destroy most biochemicals of life on Earth. Recent work, however, demonstrates that a rich organic chemistry can evolve from simple precursor molecules seeded into concentrated sulfuric acid, a result that is corroborated by domain knowledge in industry that such chemistry leads to complex molecules, including aromatics. We aim to expand the set of molecules known to be stable in concentrated sulfuric acid. Here, we show that nucleic acid bases adenine, cytosine, guanine, thymine, and uracil, as well as 2,6-diaminopurine and the "core" nucleic acid bases purine and pyrimidine, are stable in sulfuric acid in the Venus cloud temperature and sulfuric acid concentration range, using UV spectroscopy and combinations of 1D and 2D 1H 13C 15N NMR spectroscopy. The stability of nucleic acid bases in concentrated sulfuric acid advances the idea that chemistry to support life may exist in the Venus cloud particle environment.


Assuntos
Bivalves , Vênus , Adenina , Agressão , Ácidos Sulfúricos
2.
Proc Natl Acad Sci U S A ; 118(52)2021 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-34930842

RESUMO

The atmosphere of Venus remains mysterious, with many outstanding chemical connundra. These include the unexpected presence of ∼10 ppm O2 in the cloud layers, an unknown composition of large particles in the lower cloud layers, and hard to explain measured vertical abundance profiles of SO2 and H2O. We propose a hypothesis for the chemistry in the clouds that largely addresses all of the above anomalies. We include ammonia (NH3), a key component that has been tentatively detected both by the Venera 8 and Pioneer Venus probes. NH3 dissolves in some of the sulfuric acid cloud droplets, effectively neutralizing the acid and trapping dissolved SO2 as ammonium sulfite salts. This trapping of SO2 in the clouds, together with the release of SO2 below the clouds as the droplets settle out to higher temperatures, explains the vertical SO2 abundance anomaly. A consequence of the presence of NH3 is that some Venus cloud droplets must be semisolid ammonium salt slurries, with a pH of ∼1, which matches Earth acidophile environments, rather than concentrated sulfuric acid. The source of NH3 is unknown but could involve biological production; if so, then the most energy-efficient NH3-producing reaction also creates O2, explaining the detection of O2 in the cloud layers. Our model therefore predicts that the clouds are more habitable than previously thought, and may be inhabited. Unlike prior atmospheric models, ours does not require forced chemical constraints to match the data. Our hypothesis, guided by existing observations, can be tested by new Venus in situ measurements.

3.
Nanotechnology ; 34(17)2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36640445

RESUMO

In our previous paper we have modelled a dielectrophoretic force (DEP) and cell particle behavior in a microfluidic channel (Weber MUet al2023 Chip for dielectrophoretic microbial capture, separation and detection I: theoretical basis of electrode designNanotechnologythis issue). Here we test and confirm the results of our modeling work by experimentally validating the theoretical design constraints of the ring electrode architecture. We have compared and tested the geometry and particle capture and separation performance of the two separate electrode designs (the ring and dot electrode structures) by investigating bacterial motion in response to the applied electric field. We have quantitatively evaluated the electroosmosis (EO) to positive DEP (PDEP) transition in both electrode designs and explained the differences in capture efficiency of the ring and dot electrode systems. The ring structure shows 99% efficiency of bacterial capture both for PDEP and for EO. Moreover, the ring structure shows an over 200 faster bacterial response to the electric field. We have also established that the ring electrode architecture, with appropriate structure periodicity and spacing, results in efficient capture and separation of microbial cells. We have identified several critical design constraints that are required to achieve high efficiency bacterial capture. We have established that the spacing between consecutive DEP traps smaller than the length of the depletion zone will ensure that the DEP force dominates bacterial motion over motility and Brownian motion.


Assuntos
Técnicas Analíticas Microfluídicas , Microfluídica , Eletroforese/métodos , Microfluídica/métodos , Eletrodos , Técnicas Analíticas Microfluídicas/métodos , Separação Celular/métodos
4.
Nanotechnology ; 34(13)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36571849

RESUMO

We model the dielectrophoretic response ofE. colibacterial cells and red blood cells, upon exposure to an electric field. We model the separation, capture, and release mechanisms under flow conditions in a microfluidic channel and show under which conditions efficient separation of different cell types occurs. The modelling work is aimed to guide the separation electrode architecture and design for experimental validation of the model. The dielectrophoretic force is affected both by the geometry of the electrodes (the gradient of the electric field), the Re{CM(ω)} factor, and the permittivity of the medium ϵm. Our modelling makes testable predictions and shows that designing the electrode structure to ensure structure periodicity with spacing between consecutive traps smaller than the length of the depletion zone ensures efficient capture and separation. Such electrode system has higher capture and separation efficiency than systems with the established circular electrode architecture. The simulated, modelled microfluidic design allows for the separated bacteria, concentrated by dedicated dielectrophoretic regions, to be subsequently detected using label-free functionalized nanowire sensors. The experimental validation of the modelling work presented here and the validation of the theoretical design constraints of the chip electrode architecture is presented in the companion paper in the same issue (Weber MUet al2022 Chip for dielectrophoretic Microbial Capture, Separation and Detection II: Experimental Study).


Assuntos
Técnicas Analíticas Microfluídicas , Microfluídica , Eletrodos , Eletricidade , Bactérias , Separação Celular , Eletroforese
6.
Phys Chem Chem Phys ; 21(35): 18970-18987, 2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31463504

RESUMO

Unambiguously identifying molecules in spectra is of fundamental importance for a variety of scientific and industrial uses. Interpreting atmospheric spectra for the remote detection of volatile compounds requires information about the spectrum of each relevant molecule. However, spectral data currently exist for a few hundred molecules and only a fraction of those have complete spectra (e.g. H2O, NH3). Consequently, molecular detections in atmospheric spectra remain vulnerable to false positives, false negatives, and missassignments. There is a key need for spectral data for a broad range of molecules. Given how challenging it is to obtain high-resolution molecular spectra, there is great value in creating intermediate approximate spectra that can provide a starting point for the analysis of atmospheric spectra. Using a combination of experimental measurements, organic chemistry, and quantum mechanics, RASCALL (Rapid Approximate Spectral Calculations for ALL) is a computational approach that provides approximate spectral data for any given molecule, including thousands of potential atmospheric gases. RASCALL is a new theoretical chemistry method for the simulation of spectral data. RASCALL 1.0, presented here, is capable of simulating molecular spectral data, in a few seconds, by interpreting functional group data from experimental and theoretical sources to estimate the position and strength of molecular bands. The RASCALL 1.0 spectra consist of approximate band centers and qualitative intensities. RASCALL 1.0 is also able to assess hundreds of molecules simultaneously, which will inform prioritization protocols for future, computationally and experimentally costly, high-accuracy physical chemistry studies. Finally, RASCALL can be used to study spectral patterns between molecules, highlighting ambiguities in molecular detections and also directing observations towards spectral regions that reduce the degeneracy in molecular identification. The RASCALL catalogue, and its preliminary version RASCALL 1.0, contains spectral data for more molecules than any other publicly available database, with applications in all fields interested in the detection of molecules in the gas phase (e.g., medical imaging, petroleum industry, pollution monitoring, astrochemistry). The preliminary catalogue of molecular data and associated documentation are freely available online and will be routinely updated.

7.
Molecules ; 24(5)2019 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-30823503

RESUMO

Phosphorous-containing molecules are essential constituents of all living cells. While the phosphate functional group is very common in small molecule natural products, nucleic acids, and as chemical modification in protein and peptides, phosphorous can form P⁻N (phosphoramidate), P⁻S (phosphorothioate), and P⁻C (e.g., phosphonate and phosphinate) linkages. While rare, these moieties play critical roles in many processes and in all forms of life. In this review we thoroughly categorize P⁻N, P⁻S, and P⁻C natural organophosphorus compounds. Information on biological source, biological activity, and biosynthesis is included, if known. This review also summarizes the role of phosphorylation on unusual amino acids in proteins (N- and S-phosphorylation) and reviews the natural phosphorothioate (P⁻S) and phosphoramidate (P⁻N) modifications of DNA and nucleotides with an emphasis on their role in the metabolism of the cell. We challenge the commonly held notion that nonphosphate organophosphorus functional groups are an oddity of biochemistry, with no central role in the metabolism of the cell. We postulate that the extent of utilization of some phosphorus groups by life, especially those containing P⁻N bonds, is likely severely underestimated and has been largely overlooked, mainly due to the technological limitations in their detection and analysis.


Assuntos
Amidas/química , Produtos Biológicos/química , Organofosfonatos/química , Compostos Organofosforados/química , Fosfatos/química , Ácidos Fosfóricos/química
8.
J Nat Prod ; 81(2): 423-446, 2018 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-29364663

RESUMO

Only about 100 natural products are known to contain a nitrogen-sulfur (N-S) bond. This review thoroughly categorizes N-S bond-containing compounds by structural class. Information on biological source, biological activity, and biosynthesis is included, if known. We also review the role of N-S bond functional groups as post-translational modifications of amino acids in proteins and peptides, emphasizing their role in the metabolism of the cell.


Assuntos
Produtos Biológicos/química , Nitrogênio/química , Enxofre/química , Aminoácidos/química , Peptídeos/química , Proteínas/química
9.
Nature ; 466(7310): 1125-8, 2010 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-20668449

RESUMO

The post-translational methylation of alpha-amino groups was first discovered over 30 years ago on the bacterial ribosomal proteins L16 and L33 (refs 1, 2), but almost nothing is known about the function or enzymology of this modification. Several other bacterial and eukaryotic proteins have since been shown to be alpha-N-methylated. However, the Ran guanine nucleotide-exchange factor, RCC1, is the only protein for which any biological function of alpha-N-methylation has been identified. Methylation-defective mutants of RCC1 have reduced affinity for DNA and cause mitotic defects, but further characterization of this modification has been hindered by ignorance of the responsible methyltransferase. All fungal and animal N-terminally methylated proteins contain a unique N-terminal motif, Met-(Ala/Pro/Ser)-Pro-Lys, indicating that they may be targets of the same, unknown enzyme. The initiating Met is cleaved, and the exposed alpha-amino group is mono-, di- or trimethylated. Here we report the discovery of the first alpha-N-methyltransferase, which we named N-terminal RCC1 methyltransferase (NRMT). Substrate docking and mutational analysis of RCC1 defined the NRMT recognition sequence and enabled the identification of numerous new methylation targets, including SET (also known as TAF-I or PHAPII) and the retinoblastoma protein, RB. Knockdown of NRMT recapitulates the multi-spindle phenotype seen with methylation-defective RCC1 mutants, demonstrating the importance of alpha-N-methylation for normal bipolar spindle formation and chromosome segregation.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Metiltransferases/metabolismo , Proteínas Nucleares/metabolismo , Proteína do Retinoblastoma/metabolismo , Linhagem Celular , Segregação de Cromossomos , Proteínas de Ligação a DNA , Técnicas de Silenciamento de Genes , Células HeLa , Chaperonas de Histonas/metabolismo , Humanos , Metiltransferases/química , Metiltransferases/genética , Modelos Moleculares , Mutação/genética , Ligação Proteica , Estrutura Terciária de Proteína , Fuso Acromático/metabolismo , Fatores de Transcrição/metabolismo
10.
Proc Natl Acad Sci U S A ; 110(29): 11827-32, 2013 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-23818633

RESUMO

Centromeres are chromosomal loci required for accurate segregation of sister chromatids during mitosis. The location of the centromere on the chromosome is not dependent on DNA sequence, but rather it is epigenetically specified by the histone H3 variant centromere protein A (CENP-A). The N-terminal tail of CENP-A is highly divergent from other H3 variants. Canonical histone N termini are hotspots of conserved posttranslational modification; however, no broadly conserved modifications of the vertebrate CENP-A tail have been previously observed. Here, we report three posttranslational modifications on human CENP-A N termini using high-resolution MS: trimethylation of Gly1 and phosphorylation of Ser16 and Ser18. Our results demonstrate that CENP-A is subjected to constitutive initiating methionine removal, similar to other H3 variants. The nascent N-terminal residue Gly1 becomes trimethylated on the α-amino group. We demonstrate that the N-terminal RCC1 methyltransferase is capable of modifying the CENP-A N terminus. Methylation occurs in the prenucleosomal form and marks the majority of CENP-A nucleosomes. Serine 16 and 18 become phosphorylated in prenucleosomal CENP-A and are phosphorylated on asynchronous and mitotic nucleosomal CENP-A and are important for chromosome segregation during mitosis. The double phosphorylation motif forms a salt-bridged secondary structure and causes CENP-A N-terminal tails to form intramolecular associations. Analytical ultracentrifugation of phospho-mimetic CENP-A nucleosome arrays demonstrates that phosphorylation results in greater intranucleosome associations and counteracts the hyperoligomerized state exhibited by unmodified CENP-A nucleosome arrays. Our studies have revealed that the major modifications on the N-terminal tail of CENP-A alter the physical properties of the chromatin fiber at the centromere.


Assuntos
Autoantígenos/genética , Autoantígenos/metabolismo , Centrômero/química , Cromatina/química , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Epigênese Genética/genética , Conformação Molecular , Processamento de Proteína Pós-Traducional/genética , Autoantígenos/isolamento & purificação , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Proteína Centromérica A , Cromatografia Líquida de Alta Pressão , Proteínas Cromossômicas não Histona/isolamento & purificação , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Espectrometria de Massas , Metilação , Proteínas Nucleares/metabolismo , Fosforilação , Ultracentrifugação
11.
Biochem J ; 456(3): 453-62, 2013 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-24090352

RESUMO

NRMT (N-terminal regulator of chromatin condensation 1 methyltransferase) was the first eukaryotic methyltransferase identified to specifically methylate the free α-amino group of proteins. Since the discovery of this N-terminal methyltransferase, many new substrates have been identified and the modification itself has been shown to regulate DNA-protein interactions. Sequence analysis predicts one close human homologue of NRMT, METTL11B (methyltransferase-like protein 11B, now renamed NRMT2). We show in the present paper for the first time that NRMT2 also has N-terminal methylation activity and recognizes the same N-terminal consensus sequences as NRMT (now NRMT1). Both enzymes have similar tissue expression and cellular localization patterns. However, enzyme assays and MS experiments indicate that they differ in their specific catalytic functions. Although NRMT1 is a distributive methyltransferase that can mono-, di- and tri-methylate its substrates, NRMT2 is primarily a monomethylase. Concurrent expression of NRMT1 and NRMT2 accelerates the production of trimethylation, and we propose that NRMT2 activates NRMT1 by priming its substrates for trimethylation.


Assuntos
Metiltransferases/metabolismo , Catálise , Células HEK293 , Humanos , Metilação , Metiltransferases/genética , Especificidade por Substrato/fisiologia
12.
Astrobiology ; 24(4): 371-385, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37306952

RESUMO

Venus is Earth's sister planet, with similar mass and density but an uninhabitably hot surface, an atmosphere with a water activity 50-100 times lower than anywhere on Earths' surface, and clouds believed to be made of concentrated sulfuric acid. These features have been taken to imply that the chances of finding life on Venus are vanishingly small, with several authors describing Venus' clouds as "uninhabitable," and that apparent signs of life there must therefore be abiotic, or artefactual. In this article, we argue that although many features of Venus can rule out the possibility that Earth life could live there, none rule out the possibility of all life based on what we know of the physical principle of life on Earth. Specifically, there is abundant energy, the energy requirements for retaining water and capturing hydrogen atoms to build biomass are not excessive, defenses against sulfuric acid are conceivable and have terrestrial precedent, and the speculative possibility that life uses concentrated sulfuric acid as a solvent instead of water remains. Metals are likely to be available in limited supply, and the radiation environment is benign. The clouds can support a biomass that could readily be detectable by future astrobiology-focused space missions from its impact on the atmosphere. Although we consider the prospects for finding life on Venus to be speculative, they are not absent. The scientific reward from finding life in such an un-Earthlike environment justifies considering how observations and missions should be designed to be capable of detecting life if it is there.


Assuntos
Vênus , Planetas , Ácidos Sulfúricos , Água
13.
Sci Rep ; 14(1): 13823, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38879676

RESUMO

Exoplanet atmospheres are expected to vary significantly in thickness and chemical composition, leading to a continuum of differences in surface pressure and atmospheric density. This variability is exemplified within our Solar System, where the four rocky planets exhibit surface pressures ranging from 1 nPa on Mercury to 9.2 MPa on Venus. The direct effects and potential challenges of atmospheric pressure and density on life have rarely been discussed. For instance, atmospheric density directly affects the possibility of active flight in organisms, a critical factor since without it, dispersing across extensive and inhospitable terrains becomes a major limitation for the expansion of complex life. In this paper, we propose the existence of a critical atmospheric density threshold below which active flight is unfeasible, significantly impacting biosphere development. To qualitatively assess this threshold and differentiate it from energy availability constraints, we analyze the limits of active flight on Earth, using the common fruit fly, Drosophila melanogaster, as a model organism. We subjected Drosophila melanogaster to various atmospheric density scenarios and reviewed previous data on flight limitations. Our observations show that flies in an N2-enriched environment recover active flying abilities more efficiently than those in a helium-enriched environment, highlighting behavioral differences attributable to atmospheric density vs. oxygen deprivation.

14.
Sci Rep ; 14(1): 15575, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38971876

RESUMO

Life on Earth is known to rarely make fluorinated carbon compounds, as compared to other halocarbons. We quantify this rarity, based on our exhaustive natural products database curated from available literature. We build on explanations for the scarcity of fluorine chemistry in life on Earth, namely that the exclusion of the C-F bond stems from the unique physico-chemical properties of fluorine, predominantly its extreme electronegativity and strong hydration shell. We further show that the C-F bond is very hard to synthesize and when it is made by life its potential biological functions can be readily provided by alternative functional groups that are much less costly to incorporate into existing biochemistry. As a result, the overall evolutionary cost-to-benefit balance of incorporation of the C-F bond into the chemical repertoire of life is not favorable. We argue that the limitations of organofluorine chemistry are likely universal in that they do not exclusively apply to specifics of Earth's biochemistry. C-F bonds, therefore, will be rare in life beyond Earth no matter its chemical makeup.

15.
Astrobiology ; 24(4): 386-396, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38498680

RESUMO

Scientists have long speculated about the potential habitability of Venus, not at the 700K surface, but in the cloud layers located at 48-60 km altitudes, where temperatures match those found on Earth's surface. However, the prevailing belief has been that Venus' clouds cannot support life due to the cloud chemical composition of concentrated sulfuric acid-a highly aggressive solvent. In this work, we study 20 biogenic amino acids at the range of Venus' cloud sulfuric acid concentrations (81% and 98% w/w, the rest water) and temperatures. We find 19 of the biogenic amino acids we tested are either unreactive (13 in 98% w/w and 12 in 81% w/w) or chemically modified in the side chain only, after 4 weeks. Our major finding, therefore, is that the amino acid backbone remains intact in concentrated sulfuric acid. These findings significantly broaden the range of biologically relevant molecules that could be components of a biochemistry based on a concentrated sulfuric acid solvent.


Assuntos
Vênus , Aminoácidos , Atmosfera/química , Solventes , Ácidos Sulfúricos/química
16.
Astrobiology ; 24(4): 343-370, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38452176

RESUMO

Long-standing unexplained Venus atmosphere observations and chemical anomalies point to unknown chemistry but also leave room for the possibility of life. The unexplained observations include several gases out of thermodynamic equilibrium (e.g., tens of ppm O2, the possible presence of PH3 and NH3, SO2 and H2O vertical abundance profiles), an unknown composition of large, lower cloud particles, and the "unknown absorber(s)." Here we first review relevant properties of the venusian atmosphere and then describe the atmospheric chemical anomalies and how they motivate future astrobiology missions to Venus.


Assuntos
Vênus , Exobiologia , Meio Ambiente Extraterreno , Gases/química , Atmosfera/química
17.
Life (Basel) ; 14(5)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38792560

RESUMO

We show that the nucleic acid bases adenine, cytosine, guanine, thymine, and uracil, as well as 2,6-diaminopurine, and the "core" nucleic acid bases purine and pyrimidine, are stable for more than one year in concentrated sulfuric acid at room temperature and at acid concentrations relevant for Venus clouds (81% w/w to 98% w/w acid, the rest water). This work builds on our initial stability studies and is the first ever to test the reactivity and structural integrity of organic molecules subjected to extended incubation in concentrated sulfuric acid. The one-year-long stability of nucleic acid bases supports the notion that the Venus cloud environment-composed of concentrated sulfuric acid-may be able to support complex organic chemicals for extended periods of time.

18.
J Struct Funct Genomics ; 14(3): 97-108, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23963951

RESUMO

Methicillin-resistant Staphylococcus aureus (MRSA) is a major cause of a myriad of insidious and intractable infections in humans, especially in patients with compromised immune systems and children. Here, we report the apo- and CoA-bound crystal structures of a member of the galactoside acetyltransferase superfamily from methicillin-resistant S. aureus SACOL2570 which was recently shown to be down regulated in S. aureus grown in the presence of fusidic acid, an antibiotic used to treat MRSA infections. SACOL2570 forms a homotrimer in solution, as confirmed by small-angle X-ray scattering and dynamic light scattering. The protein subunit consists of an N-terminal alpha-helical domain connected to a C-terminal LßH domain. CoA binds in the active site formed by the residues from adjacent LßH domains. After determination of CoA-bound structure, molecular dynamics simulations were performed to model the binding of AcCoA. Binding of both AcCoA and CoA to SACOL2570 was verified by isothermal titration calorimetry. SACOL2570 most likely acts as an acetyltransferase, using AcCoA as an acetyl group donor and an as-yet-undetermined chemical moiety as an acceptor. SACOL2570 was recently used as a scaffold for mutations that lead the generation of cage-like assemblies, and has the potential to be used for the generation of more complex nanostructures.


Assuntos
Acetilcoenzima A/metabolismo , Acetiltransferases/metabolismo , Acetiltransferases/ultraestrutura , Coenzima A/metabolismo , Acetiltransferases/química , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Staphylococcus aureus Resistente à Meticilina/enzimologia , Modelos Moleculares , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Ligação Proteica , Alinhamento de Sequência
19.
Life (Basel) ; 13(12)2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38137926

RESUMO

Isotopologue ratios are anticipated to be one of the most promising signs of life that can be observed remotely. On Earth, carbon isotopes have been used for decades as evidence of modern and early metabolic processes. In fact, carbon isotopes may be the oldest evidence for life on Earth, though there are alternative geological processes that can lead to the same magnitude of fractionation. However, using isotopologues as biosignature gases in exoplanet atmospheres presents several challenges. Most significantly, we will only have limited knowledge of the underlying abiotic carbon reservoir of an exoplanet. Atmospheric carbon isotope ratios will thus have to be compared against the local interstellar medium or, better yet, their host star. A further substantial complication is the limited precision of remote atmospheric measurements using spectroscopy. The various metabolic processes that cause isotope fractionation cause less fractionation than anticipated measurement precision (biological fractionation is typically 2 to 7%). While this level of precision is easily reachable in the laboratory or with special in situ instruments, it is out of reach of current telescope technology to measure isotope ratios for terrestrial exoplanet atmospheres. Thus, gas isotopologues are poor biosignatures for exoplanets given our current and foreseeable technological limitations.

20.
Sci Rep ; 13(1): 13576, 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37604949

RESUMO

Waste gas products from technological civilizations may accumulate in an exoplanet atmosphere to detectable levels. We propose nitrogen trifluoride (NF3) and sulfur hexafluoride (SF6) as ideal technosignature gases. Earth life avoids producing or using any N-F or S-F bond-containing molecules and makes no fully fluorinated molecules with any element. NF3 and SF6 may be universal technosignatures owing to their special industrial properties, which unlike biosignature gases, are not species-dependent. Other key relevant qualities of NF3 and SF6 are: their extremely low water solubility, unique spectral features, and long atmospheric lifetimes. NF3 has no non-human sources and was absent from Earth's pre-industrial atmosphere. SF6 is released in only tiny amounts from fluorine-containing minerals, and is likely produced in only trivial amounts by volcanic eruptions. We propose a strategy to rule out SF6's abiotic source by simultaneous observations of SiF4, which is released by volcanoes in an order of magnitude higher abundance than SF6. Other fully fluorinated human-made molecules are of interest, but their chemical and spectral properties are unavailable. We summarize why life on Earth-and perhaps life elsewhere-avoids using F. We caution, however, that we cannot definitively disentangle an alien biochemistry byproduct from a technosignature gas.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa