Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biol Chem ; 287(27): 22781-8, 2012 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-22582390

RESUMO

Homeostatic scaling allows neurons to alter synaptic transmission to compensate for changes in network activity. Here, we show that suppression of network activity with tetrodotoxin, which increases surface expression of AMPA receptors (AMPARs), dramatically reduces levels of the deSUMOylating (where SUMO is small ubiquitin-like modifier) enzyme SENP1, leading to a consequent increase in protein SUMOylation. Overexpression of the catalytic domain of SENP1 prevents this scaling effect, and we identify Arc as a SUMO substrate involved in the tetrodotoxin-induced increase in AMPAR surface expression. Thus, protein SUMOylation plays an important and previously unsuspected role in synaptic trafficking of AMPARs that underlies homeostatic scaling.


Assuntos
Endopeptidases/metabolismo , Hipocampo/fisiologia , Homeostase/fisiologia , Neurônios/fisiologia , Sumoilação/fisiologia , Sinapses/metabolismo , Animais , Cisteína Endopeptidases , Proteínas do Citoesqueleto/metabolismo , Endopeptidases/genética , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Células HEK293 , Hipocampo/citologia , Humanos , Proteínas do Tecido Nervoso/metabolismo , Plasticidade Neuronal/fisiologia , Técnicas de Cultura de Órgãos , Transporte Proteico/fisiologia , Ratos , Receptores de AMPA/metabolismo , Bloqueadores dos Canais de Sódio/farmacologia , Sumoilação/efeitos dos fármacos , Tetrodotoxina/farmacologia
2.
Nat Neurosci ; 20(4): 529-539, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28192396

RESUMO

Long-term potentiation (LTP) in the rat hippocampus is the most extensively studied cellular model for learning and memory. Induction of classical LTP involves an NMDA-receptor- and calcium-dependent increase in functional synaptic AMPA receptors, mediated by enhanced recycling of internalized AMPA receptors back to the postsynaptic membrane. Here we report a physiologically relevant NMDA-receptor-independent mechanism that drives increased AMPA receptor recycling and LTP. This pathway requires the metabotropic action of kainate receptors and activation of G protein, protein kinase C and phospholipase C. Like classical LTP, kainate-receptor-dependent LTP recruits recycling endosomes to spines, enhances synaptic recycling of AMPA receptors to increase their surface expression and elicits structural changes in spines, including increased growth and maturation. These data reveal a new and, to our knowledge, previously unsuspected role for postsynaptic kainate receptors in the induction of functional and structural plasticity in the hippocampus.


Assuntos
Hipocampo/fisiologia , Potenciação de Longa Duração/fisiologia , Receptores de Ácido Caínico/fisiologia , Animais , Células Cultivadas , Espinhas Dendríticas/metabolismo , Endossomos/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Masculino , Neurônios/metabolismo , Neurônios/fisiologia , Proteína Quinase C/metabolismo , Ratos , Receptores de AMPA/metabolismo , Fosfolipases Tipo C/metabolismo
3.
Nat Med ; 19(8): 1030-8, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23852340

RESUMO

Huntington's disease is caused by an expanded polyglutamine repeat in the huntingtin protein (HTT), but the pathophysiological sequence of events that trigger synaptic failure and neuronal loss are not fully understood. Alterations in N-methyl-D-aspartate (NMDA)-type glutamate receptors (NMDARs) have been implicated. Yet, it remains unclear how the HTT mutation affects NMDAR function, and direct evidence for a causative role is missing. Here we show that mutant HTT redirects an intracellular store of juvenile NMDARs containing GluN3A subunits to the surface of striatal neurons by sequestering and disrupting the subcellular localization of the endocytic adaptor PACSIN1, which is specific for GluN3A. Overexpressing GluN3A in wild-type mouse striatum mimicked the synapse loss observed in Huntington's disease mouse models, whereas genetic deletion of GluN3A prevented synapse degeneration, ameliorated motor and cognitive decline and reduced striatal atrophy and neuronal loss in the YAC128 Huntington's disease mouse model. Furthermore, GluN3A deletion corrected the abnormally enhanced NMDAR currents, which have been linked to cell death in Huntington's disease and other neurodegenerative conditions. Our findings reveal an early pathogenic role of GluN3A dysregulation in Huntington's disease and suggest that therapies targeting GluN3A or pathogenic HTT-PACSIN1 interactions might prevent or delay disease progression.


Assuntos
Comportamento Animal , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteínas de Transporte/metabolismo , Morte Celular/efeitos dos fármacos , Proteínas do Citoesqueleto , Modelos Animais de Doenças , Deleção de Genes , Células HEK293 , Humanos , Doença de Huntington/fisiopatologia , Imunoprecipitação , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Atividade Motora/efeitos dos fármacos , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Proteínas Mutantes/toxicidade , Neostriado/metabolismo , Neostriado/patologia , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Neuropeptídeos/metabolismo , Fosfoproteínas/metabolismo , Ligação Proteica/efeitos dos fármacos , Estrutura Quaternária de Proteína , Teste de Desempenho do Rota-Rod , Sinapses/efeitos dos fármacos , Sinapses/ultraestrutura
4.
PLoS One ; 7(2): e30402, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22348007

RESUMO

Activation of muscarinic acetylcholine receptors (mAChR) facilitates the induction of synaptic plasticity and enhances cognitive function. In the hippocampus, M(1) mAChR on CA1 pyramidal cells inhibit both small conductance Ca(2+)-activated KCa2 potassium channels and voltage-activated Kv7 potassium channels. Inhibition of KCa2 channels facilitates long-term potentiation (LTP) by enhancing Ca(2+)calcium influx through postsynaptic NMDA receptors (NMDAR). Inhibition of Kv7 channels is also reported to facilitate LTP but the mechanism of action is unclear. Here, we show that inhibition of Kv7 channels with XE-991 facilitated LTP induced by theta burst pairing at Schaffer collateral commissural synapses in rat hippocampal slices. Similarly, negating Kv7 channel conductance using dynamic clamp methodologies also facilitated LTP. Negation of Kv7 channels by XE-991 or dynamic clamp did not enhance synaptic NMDAR activation in response to theta burst synaptic stimulation. Instead, Kv7 channel inhibition increased the amplitude and duration of the after-depolarisation following a burst of action potentials. Furthermore, the effects of XE-991 were reversed by re-introducing a Kv7-like conductance with dynamic clamp. These data reveal that Kv7 channel inhibition promotes NMDAR opening during LTP induction by enhancing depolarisation during and after bursts of postsynaptic action potentials. Thus, during the induction of LTP M(1) mAChRs enhance NMDAR opening by two distinct mechanisms namely inhibition of KCa2 and Kv7 channels.


Assuntos
Hipocampo/fisiologia , Canal de Potássio KCNQ1/antagonistas & inibidores , Potenciação de Longa Duração/fisiologia , Potenciais de Ação , Animais , Cálcio/metabolismo , Ratos , Receptores Muscarínicos , Receptores de N-Metil-D-Aspartato/metabolismo
5.
Neuron ; 68(5): 948-63, 2010 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-21145007

RESUMO

Muscarinic receptor activation facilitates the induction of synaptic plasticity and enhances cognitive function. However, the specific muscarinic receptor subtype involved and the critical intracellular signaling pathways engaged have remained controversial. Here, we show that the recently discovered highly selective allosteric M(1) receptor agonist 77-LH-28-1 facilitates long-term potentiation (LTP) induced by theta burst stimulation at Schaffer collateral synapses in the hippocampus. Similarly, release of acetylcholine by stimulation of cholinergic fibers facilitates LTP via activation of M(1) receptors. N-methyl-D-aspartate receptor (NMDAR) opening during theta burst stimulation was enhanced by M(1) receptor activation, indicating this is the mechanism for LTP facilitation. M(1) receptors were found to enhance NMDAR activation by inhibiting SK channels that otherwise act to hyperpolarize postsynaptic spines and inhibit NMDAR opening. Thus, we describe a mechanism where M(1) receptor activation inhibits SK channels, allowing enhanced NMDAR activity and leading to a facilitation of LTP induction in the hippocampus.


Assuntos
Potenciação de Longa Duração/efeitos dos fármacos , Agonistas Muscarínicos/farmacologia , Piperidinas/farmacologia , Quinolonas/farmacologia , Receptor Muscarínico M1/efeitos dos fármacos , Canais de Potássio Ativados por Cálcio de Condutância Baixa/metabolismo , Acetilcolina/metabolismo , Animais , Retroalimentação Fisiológica , Hipocampo/citologia , Hipocampo/metabolismo , Técnicas In Vitro , Potenciação de Longa Duração/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Inibição Neural/fisiologia , Plasticidade Neuronal/fisiologia , Ratos , Ratos Wistar , Receptor Cross-Talk/fisiologia , Receptor Muscarínico M1/metabolismo , Receptores de N-Metil-D-Aspartato/fisiologia , Sistemas do Segundo Mensageiro/fisiologia , Transdução de Sinais/fisiologia , Ritmo Teta/fisiologia
6.
Can J Physiol Pharmacol ; 86(4): 160-5, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18418424

RESUMO

The aim of this study was to determine the mechanism of transport of (14)C-thiamine in the hearts of healthy (nonalcoholic) and chronically alcoholic guinea pigs. We used the single-pass, paired-tracer dilution method on isolated and retrogradely perfused guinea pig hearts. The maximal cellular uptake (U(max)) and total cellular uptake (U(tot)) of (14)C-thiamine were determined under control conditions and under influence of possible modifiers. We tested how the presence of unlabeled thiamine, metabolic inhibitors, or absence of sodium ions influence the transport of (14)C-thiamine. The results of our experiments show that the transport of (14)C-thiamine is specific and energy-dependent and that its properties are significantly changed under the influence of chronic alcoholism. The latter effect occurs by increase in both U(max) and U(tot), as a manifestation of a compensatory mechanism in thiamine deficiency.


Assuntos
Alcoolismo/metabolismo , Miocárdio/metabolismo , Tiamina/metabolismo , Complexo Vitamínico B/metabolismo , Animais , Transporte Biológico Ativo , Radioisótopos de Carbono , Carbonil Cianeto m-Clorofenil Hidrazona/farmacologia , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Feminino , Cobaias , Cinética , Masculino , Miocárdio/enzimologia , Ouabaína/farmacologia , Fosforilação Oxidativa/efeitos dos fármacos , Perfusão , Técnica de Diluição de Radioisótopos , Sódio/metabolismo , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , ATPase Trocadora de Sódio-Potássio/metabolismo , Desacopladores/farmacologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa