Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS Genet ; 16(8): e1008644, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32776941

RESUMO

Correct regulation of cell contractility is critical for the function of many biological systems. The reproductive system of the hermaphroditic nematode C. elegans contains a contractile tube of myoepithelial cells known as the spermatheca, which stores sperm and is the site of oocyte fertilization. Regulated contraction of the spermatheca pushes the embryo into the uterus. Cell contractility in the spermatheca is dependent on actin and myosin and is regulated, in part, by Ca2+ signaling through the phospholipase PLC-1, which mediates Ca2+ release from the endoplasmic reticulum. Here, we describe a novel role for GSA-1/Gαs, and protein kinase A, composed of the catalytic subunit KIN-1/PKA-C and the regulatory subunit KIN-2/PKA-R, in the regulation of Ca2+ release and contractility in the C. elegans spermatheca. Without GSA-1/Gαs or KIN-1/PKA-C, Ca2+ is not released, and oocytes become trapped in the spermatheca. Conversely, when PKA is activated through either a gain of function allele in GSA-1 (GSA-1(GF)) or by depletion of KIN-2/PKA-R, the transit times and total numbers, although not frequencies, of Ca2+ pulses are increased, and Ca2+ propagates across the spermatheca even in the absence of oocyte entry. In the spermathecal-uterine valve, loss of GSA-1/Gαs or KIN-1/PKA-C results in sustained, high levels of Ca2+ and a loss of coordination between the spermathecal bag and sp-ut valve. Additionally, we show that depleting phosphodiesterase PDE-6 levels alters contractility and Ca2+ dynamics in the spermatheca, and that the GPB-1 and GPB-2 Gß subunits play a central role in regulating spermathecal contractility and Ca2+ signaling. This work identifies a signaling network in which Ca2+ and cAMP pathways work together to coordinate spermathecal contractions for successful ovulations.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Sinalização do Cálcio , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Contração Muscular , 3',5'-AMP Cíclico Fosfodiesterases/metabolismo , Animais , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/genética , Células Epiteliais/metabolismo , Células Epiteliais/fisiologia , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Mutação com Ganho de Função , Células Musculares/metabolismo , Células Musculares/fisiologia , Oócitos/fisiologia
2.
Cancer Cell ; 41(11): 1989-2005.e9, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37802055

RESUMO

Identifying the cells from which cancers arise is critical for understanding the molecular underpinnings of tumor evolution. To determine whether stem/progenitor cells can serve as cells of origin, we created a Msi2-CreERT2 knock-in mouse. When crossed to CAG-LSL-MycT58A mice, Msi2-CreERT2 mice developed multiple pancreatic cancer subtypes: ductal, acinar, adenosquamous, and rare anaplastic tumors. Combining single-cell genomics with computational analysis of developmental states and lineage trajectories, we demonstrate that MYC preferentially triggers transformation of the most immature MSI2+ pancreas cells into multi-lineage pre-cancer cells. These pre-cancer cells subsequently diverge to establish pancreatic cancer subtypes by activating distinct transcriptional programs and large-scale genomic changes, and enforced expression of specific signals like Ras can redirect subtype specification. This study shows that multiple pancreatic cancer subtypes can arise from a common pool of MSI2+ cells and provides a powerful model to understand and control the programs that shape divergent fates in pancreatic cancer.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Camundongos , Animais , Carcinoma Ductal Pancreático/patologia , Neoplasias Pancreáticas/patologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa