Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Biol Rep ; 47(4): 2551-2559, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32095986

RESUMO

The fan mussel, Pinna nobilis is a highly endangered bivalve species endemic to the Mediterranean Sea. During the last few decades, populations have been greatly reduced due to anthropic impacts and they are now under strict protection in most Mediterranean countries. Today, the species is facing a major crisis following the introduction of an haplosporidan parasite which is driving mass mortality in almost all P. nobilis populations throughout the Mediterranean Sea. Gathering additional knowledge regarding dynamics and connectivity patterns of P. nobilis populations is now more than ever critical. Here, we describe the development of 26 highly polymorphic microsatellite markers. Average allelic diversity of 10.9 alleles per locus was reported and heterozygosity ranged from 0.0294 to 0.9737. We tested cross-species amplification in four Pinna species for the new markers together with 10 already published markers, and analysed its success according to the genetic distances among species. Cross-species transferability success ranged from 3 to 38% and had a negative relationship with the genetic distance between the target species and the tested species. The establishment of this new set of high-resolution markers provides a useful tool to understand processes driving gene flow and genetic diversity in P. nobilis populations and the closest congeneric species.


Assuntos
Bivalves/genética , Repetições de Microssatélites/genética , Alelos , Animais , Variação Genética/genética , Heterozigoto , Mar Mediterrâneo , Polimorfismo Genético/genética
2.
Ecol Evol ; 14(1): e10807, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38288365

RESUMO

Spatial and temporal monitoring of species threatened with extinction is of critical importance for conservation and ecosystem management. In the Mediterranean coast, the fan mussel (Pinna nobilis) is listed as critically endangered after suffering from a mass mortality event since 2016, leading to 100% mortality in most marine populations. Conventional monitoring for this macroinvertebrate is done using scuba, which is challenging in dense meadows or with low visibility. Here we developed an environmental DNA assay targeting the fan mussel and assessed the influence of several environmental parameters on the species detectability in situ. We developed and tested an eDNA molecular marker and collected 48 water samples in two sites at the Thau lagoon (France) with distinct fan mussel density, depths and during two seasons (summer and autumn). Our marker can amplify fan mussel DNA but lacks specificity since it also amplifies a conspecific species (Pinna rudis). We successfully amplified fan mussel DNA from in situ samples with 46 positive samples (out of 48) using ddPCR, although the DNA concentrations measured were low over almost all samples. Deeper sampling depth slightly increased DNA concentrations, but no seasonal effect was found. We highlight a putative spawning event on a single summer day with much higher DNA concentration compared to all other samples. We present an eDNA molecular assay able to detect the endangered fan mussel and provide guidelines to optimize the sampling protocol to maximize detectability. Effective and non-invasive monitoring tools for endangered species are promising to monitor remaining populations and have the potential of ecological restoration or habitat recolonization following a mass mortality event.

3.
Ecol Evol ; 12(1): e8482, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35127019

RESUMO

Understanding dispersal patterns is a major focus for conservation biology as it influences local survival and resilience in case of local disturbance, particularly for sessile species. Dispersal can be assessed through parentage analyses by estimating family structure and self-recruitment. This study documents the family structure of a pelagic spawner, Pinna nobilis, which is facing a major crisis that threatens its survival as most of its populations have been decimated by a parasite, Haplosporidium pinnae. In this context, we focused on a single population (Peyrefite, Banyuls-sur-mer, France) where 640 individuals were sampled in 2011, 2015, and 2018 and genotyped for 22 microsatellite markers. Genetic diversity was high and homogeneous among years, with mean allele numbers ranging between 13.6 and 14.8 and observed heterozygosities (H o) between 0.7121 and 0.7331. Low, but significant, genetic differentiations were found between 2011-2015 and 2015-2018. A parentage analysis described 11 clusters, including one prevailing, and revealed that 46.9% of individuals were involved in half-sib relationships, even between years, suggesting that source populations were recurrent year after year. There were few individuals resampled between years (30 in 2015 and 14 in 2018), indicating a rapid turnover. Considering the large number of half-sib relationships but the low number of relations per individual, we conclude that P. nobilis exhibit homogeneous reproductive success. Self-recruitment was not detected, making this population highly vulnerable as replenishment only relies on connectivity from neighboring populations. In the context of the pandemic caused by H. pinnae, these results will have to be considered when choosing a location to reintroduce individuals in potential future rescue plans.

4.
Sci Rep ; 12(1): 21229, 2022 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-36482098

RESUMO

With the intensification of maritime traffic, recently emerged infectious diseases have become major drivers in the decline and extinction of species. Since 2016, mass mortality events have decimated the endemic Mediterranean Sea bivalve Pinna nobilis, affecting ca. 100% of individuals. These events have largely been driven by Haplosporidium pinnae's infection, an invasive species which was likely introduced by shipping. While monitoring wild populations of P. nobilis, we observed individuals that survived such a mass mortality event during the summer of 2018 (France). We considered these individuals resistant, as they did not show any symptoms of the disease, while the rest of the population in the area was devastated. Furthermore, the parasite was not detected when we conducted a PCR amplification of a species-specific fragment of the small subunit ribosomal DNA. In parallel, the transcriptomic analysis showed evidence of some parasite RNA indicating that the resistant individuals had been exposed to the parasite without proliferating. To understand the underlying mechanisms of resistance in these individuals, we compared their gene expression with that of susceptible individuals. We performed de novo transcriptome assembly and annotated the expressed genes. A comparison of the transcriptomes in resistant and susceptible individuals highlighted a gene expression signature of the resistant phenotype. We found significant differential expressions of genes involved in immunity and cell architecture. This data provides the first insights into how individuals escape the pathogenicity associated with infection.


Assuntos
Parasitos , Animais , RNA-Seq , França , Mar Mediterrâneo
5.
Sci Rep ; 11(1): 7805, 2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-33833376

RESUMO

The fan mussel, Pinna nobilis, endemic to the Mediterranean Sea, is a critically endangered species facing mass mortality events in almost all of its populations, following the introduction of the parasite Haplosporidium pinnae. Such a unique pandemic in a marine organism, which spreads rapidly and with mortality rates reaching up to 100%, could lead to the potential extinction of the species. Only few regions, involving lagoon habitats, remain healthy throughout the entire Mediterranean Sea. This study describes the genetic structure of P. nobilis across the Gulf of Lion, including confined locations such as lagoons and ports. A total of 960 samples were collected among 16 sites distributed at 8 localities, and then genotyped using 22 microsatellite markers. Genetic diversity was high in all sites with mean allele numbers ranging between 10 and 14.6 and with observed heterozygosities (Ho) between 0.679 and 0.704. No genetic differentiation could be identified (FST ranging from 0.0018 to 0.0159) and the percentages of related individuals were low and similar among locations (from 1.6 to 6.5%). Consequently, all fan mussels, over the entire coastline surveyed, including those in the most geographically isolated areas, belong to a large genetically homogeneous population across the Gulf of Lion. Considering the ongoing mass mortality context, this result demonstrates that almost all of the genetic diversity of P. nobilis populations is still preserved even in isolated lagoons, which might represent a refuge habitat for the future of the species.


Assuntos
Bivalves/genética , Ecossistema , Espécies em Perigo de Extinção , Animais , Variação Genética , Mar Mediterrâneo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa