Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Hepatology ; 52(1): 313-26, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20578158

RESUMO

UNLABELLED: Liver sinusoidal endothelium (LSEC) is a prime example of organ-specific microvascular differentiation and functions. Disease-associated capillarization of LSEC in vivo and dedifferentiation of LSEC in vitro indicate the importance of the hepatic microenvironment. To identify the LSEC-specific molecular differentiation program in the rat we used a two-sided gene expression profiling approach comparing LSEC freshly isolated ex vivo with both lung microvascular endothelial cells (LMEC) and with LSEC cultured for 42 hours. The LSEC signature consisted of 48 genes both down-regulated in LMEC and in LSEC upon culture (fold change >7 in at least one comparison); quantitative reverse-transcription polymerase chain reaction confirmation of these genes included numerous family members and signaling pathway-associated molecules. The LSEC differentiation program comprised distinct sets of growth (Wnt2, Fzd4, 5, 9, Wls, vascular endothelial growth factors [VEGFR] 1, 2, 3, Nrp2) and transcription factors (Gata4, Lmo3, Tcfec, Maf) as well as endocytosis-related (Stabilin-1/2, Lyve1, and Ehd3) and cytoskeleton-associated molecules (Rnd3/RhoE). Specific gene induction in cultured LSEC versus freshly isolated LSEC as well as LMEC (Esm-1, Aatf) and up-regulation of gene expression to LMEC levels (CXCR4, Apelin) confirmed true transdifferentiation of LSEC in vitro. In addition, our analysis identified a novel 26-kDa single-pass transmembrane protein, liver endothelial differentiation-associated protein (Leda)-1, that was selectively expressed in all liver endothelial cells and preferentially localized to the abluminal cell surface. Upon forced overexpression in MDCK cells, Leda-1 was sorted basolaterally to E-cadherin-positive adherens junctions, suggesting functional involvement in cell adhesion and polarity. CONCLUSION: Comparative microvascular analysis in rat identified a hepatic microenvironment-dependent LSEC-specific differentiation program including the novel junctional molecule Leda-1.


Assuntos
Capilares/metabolismo , Diferenciação Celular/genética , Endotélio Vascular/metabolismo , Fígado/irrigação sanguínea , Proteínas de Membrana/metabolismo , Junções Aderentes/metabolismo , Animais , Capilares/citologia , Linhagem Celular , Cães , Endocitose/genética , Endotélio Vascular/citologia , Perfilação da Expressão Gênica , Marcadores Genéticos , Proteínas de Membrana/genética , Ratos , Ratos Sprague-Dawley , Receptores de Fatores de Crescimento do Endotélio Vascular/genética , Fatores de Transcrição/genética
2.
Angiogenesis ; 12(3): 251-65, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19444628

RESUMO

Recently, we have shown that Wnt2 is an autocrine growth and differentiation factor for hepatic sinusoidal endothelial cells. As Wnt signaling has become increasingly important in vascular development and cancer, we analyzed Wnt signaling in non-sinusoidal endothelial cells of different vascular origin (HUVEC, HUAEC, HMVEC-LLy). Upon screening the multiple components of the Wnt pathway, we demonstrated lack of Wnt2 expression, but presence of Frizzled-4, one of its receptors, in cultured non-sinusoidal endothelial cells. Treatment of these cells by exogenous Wnt2 induced endothelial proliferation and sprouting angiogenesis in vitro. Upon analysis of Wnt2 tissue expression as a basis for paracrine Wnt2 effects on non-sinusoidal endothelial cells in vivo, Wnt2 was found to be expressed in densely vascularized murine malignant tumors and in wound healing tissues in close proximity to CD31+ endothelial cells. By gene profiling, stanniocalcin-1 (STC1), a known regulator of angiogenesis, was identified as a target gene of Wnt2 signaling in HUVEC down-regulated by Wnt2 treatment. Tumor-conditioned media counter-acted Wnt2 and up-regulated STC1 expression in HUVEC. In conclusion, we provide evidence that Wnt2 acts as an angiogenic factor for non-sinusoidal endothelium in vitro and in vivo whose target genes undergo complex regulation by the tissue microenvironment.


Assuntos
Células Endoteliais/efeitos dos fármacos , Glicoproteínas/genética , Neovascularização Fisiológica/efeitos dos fármacos , Proteína Wnt2/farmacologia , Indutores da Angiogênese/farmacologia , Animais , Células CHO , Células Cultivadas , Cricetinae , Cricetulus , Regulação para Baixo/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Endoteliais/fisiologia , Glicoproteínas/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Neovascularização Fisiológica/genética , Ratos , Ratos Sprague-Dawley , Proteína Wnt2/fisiologia
3.
Hepatology ; 47(3): 1018-31, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18302287

RESUMO

UNLABELLED: The mechanisms regulating the growth and differentiation of hepatic sinusoidal endothelial cells (HSECs) are not well defined. Because Wnt signaling has become increasingly important in developmental processes such as vascular and hepatic differentiation, we analyzed HSEC-specific Wnt signaling in detail. Using highly pure HSECs isolated by a newly developed protocol selecting against nonsinusoidal hepatic endothelial cells, we comparatively screened the multiple components of the Wnt pathway for differential expression in HSECs and lung microvascular endothelial cells (LMECs) via reverse-transcription polymerase chain reaction (RT-PCR). As confirmed via quantitative RT-PCR and northern and western blotting experiments, Wnt2 (and less so Wnt transporter wls/evi) and Wnt coreceptor Ryk were overexpressed by HSECs, whereas Wnt inhibitory factor (WIF) was strongly overexpressed by LMECs. Exogenous Wnt2 superinduced proliferation of HSECs (P < 0.05). The Wnt inhibitor secreted frizzled-related protein 1 (sFRP1) (P < 0.005) and transfection of HSECs with Wnt2 small interfering RNA (siRNA) reduced proliferation of HSECs. These effects were rescued by exogenous Wnt2. Tube formation of HSECs on matrigel was strongly inhibited by Wnt inhibitors sFRP1 and WIF (P < 0.0005). Wnt signaling in HSECs activated the canonical pathway inducing nuclear translocation of beta-catenin. GST (glutathione transferase) pull-down and co-immunoprecipitation assays showed Fzd4 to be a novel Wnt2 receptor in HSECs. Gene profiling identified vascular endothelial growth factor receptor-2 (VEGFR-2) as a target of Wnt2 signaling in HSECs. Inhibition of Wnt signaling down-regulated VEGFR-2 messenger RNA and protein. Wnt2 siRNA knock-down confirmed Wnt2 specificity of VEGFR-2 regulation in HSECs. CONCLUSION: Wnt2 is an autocrine growth and differentiation factor specific for HSECs that synergizes with the VEGF signaling pathway to exert its effects.


Assuntos
Células Endoteliais/metabolismo , Fígado/crescimento & desenvolvimento , Fígado/metabolismo , Morfogênese/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteína Wnt2/metabolismo , Animais , Proliferação de Células , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Fígado/citologia , Ratos , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Proteína Wnt2/antagonistas & inibidores , Proteína Wnt2/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa