Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
J Org Chem ; 86(4): 3107-3119, 2021 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-33476157

RESUMO

A broad range of N-carbamoylaziridines were obtained and then treated by the diethyl phosphonate anion to afford α-methylene-gem-bisphosphonate aziridines. Study of the reaction's scope and additional experiments indicates that the transformation proceeds via a new mechanism involving the chelation of lithium ion. This last step is crucial for the reaction to occur and disfavors the aziridine ring-opening. A phosphonate-phosphate rearrangement from a α-hydroxybisphosphonate aziridine intermediate is also proposed for the first time. This reaction provides a simple and convenient method for the synthesis of a highly functionalized phosphonylated aziridine motif.


Assuntos
Aziridinas , Organofosfonatos , Difosfonatos
2.
Bioorg Chem ; 107: 104577, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33450542

RESUMO

Three series of nucleotide analogues were synthesized and evaluated as potential CD73 inhibitors. Nucleobase replacement consisted in connecting the appropriate aromatic or purine residues through a triazole moiety that is generated from 1,3-dipolar cycloaddition. The first series is related to 4-substituted-1,2,3-triazolo-ß-hydroxyphosphonate ribonucleosides. Additional analogues were also obtained, in which the phosphonate group was replaced by a bisphosphonate pattern (P-C-P-C, series 2) or the ribose moiety was removed leading to acyclic derivatives (series 3). The ß-hydroxyphosphonylphosphonate ribonucleosides (series 2) were found to be potent inhibitors of CD73 using both purified recombinant protein and cell-based assays. Two compounds (2a and 2b) that contained a bis(trifluoromethyl)phenyl or a naphthyl substituents proved to be the most potent inhibitors, with IC50 values of 4.8 ± 0.8 µM and 0.86 ± 0.2 µM, compared to the standard AOPCP (IC50 value of 3.8 ± 0.9 µM), and were able to reverse the adenosine-mediated immune suppression on human T cells. This series of compounds illustrates a new type of CD73 inhibitors.


Assuntos
5'-Nucleotidase/antagonistas & inibidores , Algoritmos , Nucleotídeos/farmacologia , Triazóis/farmacologia , 5'-Nucleotidase/metabolismo , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Proteínas Ligadas por GPI/antagonistas & inibidores , Proteínas Ligadas por GPI/metabolismo , Humanos , Cinética , Estrutura Molecular , Nucleotídeos/síntese química , Nucleotídeos/química , Relação Estrutura-Atividade , Triazóis/síntese química , Triazóis/química
3.
J Org Chem ; 85(18): 11778-11793, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32871069

RESUMO

3-Acetoacetyl-4,6-diaryl-2-pyridones are synthesized in three steps from chalcones and then condense with carbon disulfide to afford 8-azachromones containing a methylthio group at C2. This leaving group offers an entry point for the insertion of more complex moieties via nucleophilic substitution. For this purpose, N-nucleophiles are explored according to their positions in the Mayr's nucleophilicity scale (N parameter), and three main classes are distinguished depending on whether the substitution takes place from their neutral forms, from their deprotonated anionic forms, or under nucleophilic catalysis. A broad range of primary and secondary amines may be inserted by this method, including enantiomerically pure amino acids, enabling us to explore structural diversity.

4.
Chemistry ; 25(10): 2477-2481, 2019 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-30549335

RESUMO

A solvent-assisted mechanochemical approach to access symmetrical and mixed dinucleoside 5,5'-polyphosphates is reported. Under ball-milling conditions, nucleoside 5'-monophosphates were quantitatively activated using 1,1'-carbonyldiimidazole, forming their phosphorimidazolide derivatives. The addition of a nucleoside 5'-mono-, di- or triphosphate directly led to the formation of the corresponding dinucleotides. Benefits of the reported one-pot method include the use of unprotected nucleotides in their sodium or acid form, activation by the eco-friendly 1,1'-carbonyldiimidazole, non-dry conditions, short reaction time, high conversion rates, and easy setup and purification. This work offers new perspectives for the synthesis of nucleotide conjugates and analogues, combining the phosphorimidazolide approach and milling conditions.

5.
PLoS Comput Biol ; 14(1): e1005943, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29377887

RESUMO

The ecto-5'-nucleotidase CD73 plays an important role in the production of immune-suppressive adenosine in tumor micro-environment, and has become a validated drug target in oncology. Indeed, the anticancer immune response involves extracellular ATP to block cell proliferation through T-cell activation. However, in the tumor micro-environment, two extracellular membrane-bound enzymes (CD39 and CD73) are overexpressed and hydrolyze efficiently ATP into AMP then further into immune-suppressive adenosine. To circumvent the impact of CD73-generated adenosine, we applied an original bioinformatics approach to identify new allosteric inhibitors targeting the dimerization interface of CD73, which should impair the large dynamic motions required for its enzymatic function. Several hit compounds issued from virtual screening campaigns showed a potent inhibition of recombinant CD73 with inhibition constants in the low micromolar range and exhibited a non-competitive inhibition mode. The structure-activity relationships studies indicated that several amino acid residues (D366, H456, K471, Y484 and E543 for polar interactions and G453-454, I455, H456, L475, V542 and G544 for hydrophobic contacts) located at the dimerization interface are involved in the tight binding of hit compounds and likely contributed for their inhibitory activity. Overall, the gathered information will guide the upcoming lead optimization phase that may lead to potent and selective CD73 inhibitors, able to restore the anticancer immune response.


Assuntos
5'-Nucleotidase/antagonistas & inibidores , 5'-Nucleotidase/genética , Adenosina/metabolismo , Sítio Alostérico , Anticorpos Monoclonais/química , Antineoplásicos/química , Proliferação de Células , Biologia Computacional , Cristalografia por Raios X , Proteínas Ligadas por GPI/antagonistas & inibidores , Proteínas Ligadas por GPI/genética , Humanos , Sistema Imunitário , Inflamação , Cinética , Espectroscopia de Ressonância Magnética , Modelos Estatísticos , Simulação de Dinâmica Molecular , Fenótipo , Ligação Proteica , Conformação Proteica , Multimerização Proteica , Proteínas Recombinantes/química , Software
6.
Molecules ; 24(23)2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31783537

RESUMO

Dinucleoside 5',5'-polyphosphates (DNPs) are endogenous substances that play important intra- and extracellular roles in various biological processes, such as cell proliferation, regulation of enzymes, neurotransmission, platelet disaggregation and modulation of vascular tone. Various methodologies have been developed over the past fifty years to access these compounds, involving enzymatic processes or chemical procedures based either on P(III) or P(V) chemistry. Both solution-phase and solid-support strategies have been developed and are reported here. Recently, green chemistry approaches have emerged, offering attracting alternatives. This review outlines the main synthetic pathways for the preparation of dinucleoside 5',5'-polyphosphates, focusing on pharmacologically relevant compounds, and highlighting recent advances.


Assuntos
Fosfatos de Dinucleosídeos/síntese química , Agonistas do Receptor Purinérgico P2Y/síntese química , Nucleotídeos de Desoxicitosina/agonistas , Nucleotídeos de Desoxicitosina/química , Nucleotídeos de Desoxicitosina/farmacologia , Fosfatos de Dinucleosídeos/química , Fosfatos de Dinucleosídeos/isolamento & purificação , Síndromes do Olho Seco/tratamento farmacológico , Química Verde , Humanos , Soluções Oftálmicas , Fosforilação , Polifosfatos/síntese química , Polifosfatos/química , Agonistas do Receptor Purinérgico P2Y/química , Agonistas do Receptor Purinérgico P2Y/isolamento & purificação , Receptores Purinérgicos/metabolismo , Nucleotídeos de Uracila/química , Uridina/agonistas , Uridina/análogos & derivados , Uridina/química , Uridina/farmacologia
7.
Chem Rev ; 116(14): 7854-97, 2016 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-27319940

RESUMO

Focusing on the recent literature (since 2000), this review outlines the main synthetic approaches for the preparation of 5'-mono-, 5'-di-, and 5'-triphosphorylated nucleosides, also known as nucleotides, as well as several derivatives, namely, cyclic nucleotides and dinucleotides, dinucleoside 5',5'-polyphosphates, sugar nucleotides, and nucleolipids. Endogenous nucleotides and their analogues can be obtained enzymatically, which is often restricted to natural substrates, or chemically. In chemical synthesis, protected or unprotected nucleosides can be used as the starting material, depending on the nature of the reagents selected from P(III) or P(V) species. Both solution-phase and solid-support syntheses have been developed and are reported here. Although a considerable amount of research has been conducted in this field, further work is required because chemists are still faced with the challenge of developing a universal methodology that is compatible with a large variety of nucleoside analogues.


Assuntos
Nucleotídeos/síntese química , Técnicas de Química Sintética , Conformação Molecular , Nucleotídeos/química , Nucleotídeos/isolamento & purificação
8.
J Immunol ; 196(5): 2219-29, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26819204

RESUMO

Human Vγ9Vδ2 T cells are activated through their TCR by neighboring cells producing phosphoantigens. Zoledronate (ZOL) treatment induces intracellular accumulation of the phosphoantigens isopentenyl pyrophosphate and ApppI. Few attempts have been made to use immunomanipulation of Vγ9Vδ2 lymphocytes in chronic viral infections. Although Vγ9Vδ2 T cells seem to ignore human CMV (HCMV)-infected cells, we examined whether they can sense HCMV when a TCR stimulus is provided with ZOL. Fibroblasts treated with ZOL activate Vγ9Vδ2 T cells to produce IFN-γ but not TNF. Following the same treatment, HCMV-infected fibroblasts stimulate TNF secretion and an increased production of IFN-γ, indicating that Vγ9Vδ2 cells can sense HCMV infection. Increased lymphokine production was observed with most clinical isolates and laboratory HCMV strains, HCMV-permissive astrocytoma, or dendritic cells, as well as "naive" and activated Vγ9Vδ2 cells. Quantification of intracellular isopentenyl pyrophosphate/ApppI following ZOL treatment showed that HCMV infection boosts their accumulation. This was explained by an increased capture of ZOL and by upregulation of HMG-CoA synthase and reductase transcription. Using an experimental setting where infected fibroblasts were cocultured with γδ cells in submicromolar concentrations of ZOL, we show that Vγ9Vδ2 cells suppressed substantially the release of infectious particles while preserving uninfected cells. Vγ9Vδ2 cytotoxicity was decreased by HCMV infection of targets whereas anti-IFN-γ and anti-TNF Abs significantly blocked the antiviral effect. Our experiments indicate that cytokines produced by Vγ9Vδ2 T cells have an antiviral potential in HCMV infection. This should lead to in vivo studies to explore the possible antiviral effect of immunostimulation with ZOL in this context.


Assuntos
Citomegalovirus/imunologia , Difosfonatos/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/genética , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Linhagem Celular , Células Cultivadas , Citocinas/metabolismo , Citomegalovirus/classificação , Infecções por Citomegalovirus/imunologia , Infecções por Citomegalovirus/metabolismo , Infecções por Citomegalovirus/virologia , Citotoxicidade Imunológica , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Difosfonatos/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Humanos , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Ativação Linfocitária , Ácido Mevalônico/metabolismo , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Replicação Viral
9.
Cell Mol Life Sci ; 74(23): 4353-4367, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28669030

RESUMO

Human Vγ9Vδ2 T cells can sense through their TCR tumor cells producing the weak endogenous phosphorylated antigen isopentenyl pyrophosphate (IPP), or bacterially infected cells producing the strong agonist hydroxyl dimethylallyl pyrophosphate (HDMAPP). The recognition of the phosphoantigen is dependent on its binding to the intracellular B30.2 domain of butyrophilin BTN3A1. Most studies have focused on pyrophosphate phosphoantigens. As triphosphate nucleotide derivatives are naturally co-produced with IPP and HDMAPP, we analyzed their specific properties using synthetic nucleotides derived from HDMAPP. The adenylated, thymidylated and uridylated triphosphate derivatives were found to activate directly Vγ9Vδ2 cell lines as efficiently as HDMAPP in the absence of accessory cells. These antigens were inherently resistant to terminal phosphatases, but apyrase, when added during a direct stimulation of Vγ9Vδ2 cells, abrogated their stimulating activity, indicating that their activity required transformation into strong pyrophosphate agonists by a nucleotide pyrophosphatase activity which is present in serum. Tumor cells can be sensitized with nucleotide phosphoantigens in the presence of apyrase to become stimulatory, showing that this can occur before their hydrolysis into pyrophosphates. Whereas tumors sensitized with HDMAPP rapidly lost their stimulatory activity, sensitization with nucleotide derivatives, in particular with the thymidine derivative, induced long-lasting stimulating ability. Using isothermal titration calorimetry, binding of some nucleotide derivatives to BTN3A1 intracellular domain was found to occur with an affinity similar to that of IPP, but much lower than that of HDMAPP. Thus, nucleotide phosphoantigens are precursors of pyrophosphate antigens which can deliver strong agonists intracellularly resulting in prolonged and strengthened activity.


Assuntos
Antígenos CD/genética , Butirofilinas/genética , Hemiterpenos/farmacologia , Ativação Linfocitária/efeitos dos fármacos , Organofosfatos/farmacologia , Compostos Organofosforados/farmacologia , Receptores de Antígenos de Linfócitos T gama-delta/genética , Linfócitos T/efeitos dos fármacos , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/farmacologia , Antígenos/farmacologia , Antígenos CD/imunologia , Butirofilinas/imunologia , Relação Dose-Resposta Imunológica , Células HeLa , Humanos , Interferon gama/biossíntese , Interferon gama/imunologia , Células K562 , Proteína 1 de Membrana Associada ao Lisossomo/biossíntese , Proteína 1 de Membrana Associada ao Lisossomo/imunologia , Cultura Primária de Células , Receptores de Antígenos de Linfócitos T gama-delta/classificação , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Linfócitos T/citologia , Linfócitos T/imunologia , Fator de Necrose Tumoral alfa/biossíntese , Fator de Necrose Tumoral alfa/imunologia
10.
Beilstein J Org Chem ; 12: 1476-86, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27559400

RESUMO

A series of seventeen ß-hydroxyphosphonate ribonucleoside analogues containing 4-substituted-1,2,3-triazoles was synthesized and fully characterized. Such compounds were designed as potential inhibitors of the cytosolic 5'-nucleotidase II (cN-II), an enzyme involved in the regulation of purine nucleotide pools. NMR and molecular modelling studies showed that a few derivatives adopted similar structural features to IMP or GMP. Five derivatives were identified as modest inhibitors with 53 to 64% of cN-II inhibition at 1 mM.

11.
Anal Bioanal Chem ; 407(19): 5747-58, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25998135

RESUMO

The cytosolic 5'-nucleotidase (cN-II) has been shown to be involved in the response of cancer cells to cytotoxic agents, and the quantification of its activity in biological samples is of great interest. In this context, we developed and validated an analytical method for determination of cN-II activity in cultured cancer cells. This non-radioactive method, using a Hypercarb column as stationary phase, was validated with a lower limit of quantification of 0.1 µM inosine. We used it to characterize cell line models with modified cN-II expression obtained with stable transfections. We show that the short hairpin RNA (shRNA)-mediated inhibition of cN-II expression in various malignant blood cells is associated with decreased protein expression and enzymatic activity (1.7-6.2-fold) as well as an increased sensitivity to cytotoxic agents (up to 14-fold). On the other hand, expression of green fluorescent protein (GFP)-fused wild type or hyperactive mutant (R367Q) cN-II increased the activity and also decreased the sensitivity to nucleoside analogues. Our results confirm the biological relevance of modulating cN-II in cancer cells, and we present a straightforward validated method for the determination of cN-II activity in cellular samples.


Assuntos
5'-Nucleotidase/metabolismo , Neoplasias/enzimologia , 5'-Nucleotidase/genética , Estudos de Casos e Controles , Ciclo Celular , Cromatografia Líquida , Expressão Gênica , Humanos , Neoplasias/genética , Neoplasias/patologia , Espectrometria de Massas em Tandem , Transfecção , Células Tumorais Cultivadas
12.
Antimicrob Agents Chemother ; 58(9): 5519-27, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25001307

RESUMO

Bis-thiazolium salts constitute a new class of antihematozoan drugs that inhibit parasite phosphatidylcholine biosynthesis. They specifically accumulate in Plasmodium- and Babesia-infected red blood cells (IRBC). Here, we provide new insight into the choline analogue albitiazolium, which is currently being clinically tested against severe malaria. Concentration-dependent accumulation in P. falciparum-infected erythrocytes reached steady state after 90 to 120 min and was massive throughout the blood cycle, with cellular accumulation ratios of up to 1,000. This could not occur through a lysosomotropic effect, and the extent did not depend on the food vacuole pH, which was the case for the weak base chloroquine. Analysis of albitiazolium accumulation in P. falciparum IRBC revealed a high-affinity component that was restricted to mature stages and suppressed by pepstatin A treatment, and thus likely related to drug accumulation in the parasite food vacuole. Albitiazolium also accumulated in a second high-capacity component present throughout the blood cycle that was likely not related to the food vacuole and also observed with Babesia divergens-infected erythrocytes. Accumulation was strictly glucose dependent, drastically inhibited by H+/K+ and Na+ ionophores upon collapse of ionic gradients, and appeared to be energized by the proton-motive force across the erythrocyte plasma membrane, indicating the importance of transport steps for this permanently charged new type of antimalarial agent. This specific, massive, and irreversible accumulation allows albitiazolium to restrict its toxicity to hematozoa-infected erythrocytes. The intraparasitic compartmentation of albitiazolium corroborates a dual mechanism of action, which could make this new type of antimalarial agent resistant to parasite resistance.


Assuntos
Antimaláricos/metabolismo , Eritrócitos/metabolismo , Tiazóis/metabolismo , Antimaláricos/farmacologia , Babesia/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Resistência a Medicamentos/efeitos dos fármacos , Eritrócitos/efeitos dos fármacos , Humanos , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum/efeitos dos fármacos , Força Próton-Motriz/efeitos dos fármacos , Tiazóis/farmacologia
13.
ChemMedChem ; : e202400234, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38742678

RESUMO

Synthetic nucleoside mimics are re-emerging as crucial contenders for antiviral and anticancer medications. While, Ribavirin stands out for its unique antiviral properties, predominantly associated with its distinctive triazole heterocycle as a nucleobase, the exploration of alternative nitrogen-based aromatic heterocycles hold great promises for the discovery of novel bioactive nucleoside mimics. Although nucleoside derivatives synthesized from hydrazine-ribose units have been in development for many decades, they have been little evaluated biologically and even less for their antiviral properties. With the aim of taking a closer look at these under-explored derivatives and investigating their synthetic pathways, this review provides an overview of the molecular design, the chemical synthesis, and the biological activity, when available, of these nucleoside analogues. Overall, the entire body of work already done motivates further exploration of these analogues and encourages us of formulating structurally novel nucleoside drug candidates featuring innovative mode of action.

14.
ACS Med Chem Lett ; 15(3): 418-422, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38505859

RESUMO

Herein, we report the design, the synthesis, and the study of novel triphenyl phosphonium-based nucleoside conjugates. 2'-Deoxycytidine was chosen as nucleosidic cargo, as it allows the introduction of fluorescein on the exocyclic amine of the nucleobase and grafting of the vector was envisaged through the formation of a biolabile ester bond with the hydroxyl function at the 5'-position. Compound 3 was identified as a potential nucleoside prodrug, showing ability to be internalized efficiently into cells and to be co-localized with mitochondria.

15.
Curr Med Chem ; 30(11): 1256-1303, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36093825

RESUMO

Nucleoside analogues are widely used as anti-infectious and antitumoral agents. However, their clinical use may face limitations associated with their physicochemical properties, pharmacokinetic parameters, and/or their peculiar mechanisms of action. Indeed, once inside the cells, nucleoside analogues require to be metabolized into their corresponding (poly-)phosphorylated derivatives, mediated by cellular and/or viral kinases, in order to interfere with nucleic acid biosynthesis. Within this activation process, the first-phosphorylation step is often the limiting one and to overcome this limitation, numerous prodrug approaches have been proposed. Herein, we will focus on recent literature data (from 2015 and onwards) related to new prodrug strategies, the development of original synthetic approaches and novel applications of nucleotide prodrugs (namely pronucleotides) leading to the intracellular delivery of 5'-monophosphate nucleoside analogues.


Assuntos
Nucleosídeos , Pró-Fármacos , Humanos , Antivirais/farmacologia , Nucleosídeos/química , Nucleosídeos/metabolismo , Nucleosídeos/farmacologia , Nucleotídeos/química , Nucleotídeos/metabolismo , Nucleotídeos/farmacologia , Fosforilação , Pró-Fármacos/química
16.
Eur J Med Chem ; 258: 115581, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37402342

RESUMO

The nucleotidase ISN1 is a potential therapeutic target of the purine salvage pathway of the malaria parasite Plasmodium falciparum. We identified PfISN1 ligands by in silico screening of a small library of nucleos(t)ide analogues and by thermal shift assays. Starting from a racemic cyclopentyl carbocyclic phosphonate scaffold, we explored the diversity on the nucleobase moiety and also proposed a convenient synthetic pathway to access the pure enantiomers of our initial hit (compound (±)-2). 2,6-Disubstituted purine containing derivatives such as compounds 1, (±)-7e and ß-L-(+)-2 showed the most potent inhibition of the parasite in vitro, with low micromolar IC50 values. These results are remarkable considering the anionic nature of nucleotide analogues, which are known to lack activity in cell culture experiments due to their scarce capacity to cross cell membranes. For the first time, we report the antimalarial activity of a carbocyclic methylphosphonate nucleoside with an L-like configuration.


Assuntos
Antimaláricos , Organofosfonatos , Plasmodium falciparum/metabolismo , Organofosfonatos/farmacologia , Antimaláricos/farmacologia , Antimaláricos/metabolismo , Nucleosídeos , Purinas/metabolismo
17.
ChemMedChem ; 18(7): e202200594, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36700491

RESUMO

Various series of 4,6-biaryl-2-thiopyridine derivatives were synthesized and evaluated as potential ecto-5'-nucleotidase (CD73) inhibitors. Two synthetic routes were explored and the coupling of 4,6-disubstituted 3-cyano-2-chloro-pyridines with selected thiols allowed us to explore the structural diversity. Somehow divergent results were obtained in biological assays on CD73 inhibition using either the purified recombinant protein or cell-based assays, highlighting the difficulty to target protein-protein interface on proteins existing as soluble and membrane-bound forms. Among the 18 new derivatives obtained, three derivatives incorporating morpholino substituents on the 4,6-biaryl-2-thiopyridine core were shown to be able to reverse the adenosine-mediated immune suppression on human T cells. The higher blockade efficiency was observed for 2-((3-cyano-4,6-bis(4-morpholinophenyl)pyridin-2-yl)thio)-N-(isoxazol-3-yl)acetamide (with total reversion at 100 µM) and methyl 2-((3-cyano-4,6-bis(4-morpholinophenyl)pyridin-2-yl)thio)acetate (with partial reversion at 10 µM). Thus, this series of compounds illustrates a new chemotype of CD73 allosteric inhibitors.


Assuntos
5'-Nucleotidase , Adenosina , Humanos , Adenosina/farmacologia , Piridinas/farmacologia , Proteínas Recombinantes/química
18.
PLoS Comput Biol ; 7(12): e1002295, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22174667

RESUMO

Cytosolic 5'-nucleotidase II (cN-II) regulates the intracellular nucleotide pools within the cell by catalyzing the dephosphorylation of 6-hydroxypurine nucleoside 5'-monophosphates. Beside this physiological function, high level of cN-II expression is correlated with abnormal patient outcome when treated with cytotoxic nucleoside analogues. To identify its specific role in the resistance phenomenon observed during cancer therapy, we screened a particular class of chemical compounds, namely ribonucleoside phosphonates to predict them as potential cN-II inhibitors. These compounds incorporate a chemically and enzymatically stable phosphorus-carbon linkage instead of a regular phosphoester bond. Amongst them, six compounds were predicted as better ligands than the natural substrate of cN-II, inosine 5'-monophosphate (IMP). The study of purine and pyrimidine containing analogues and the introduction of chemical modifications within the phosphonate chain has allowed us to define general rules governing the theoretical affinity of such ligands. The binding strength of these compounds was scrutinized in silico and explained by an impressive number of van der Waals contacts, highlighting the decisive role of three cN-II residues that are Phe 157, His 209 and Tyr 210. Docking predictions were confirmed by experimental measurements of the nucleotidase activity in the presence of the three best available phosphonate analogues. These compounds were shown to induce a total inhibition of the cN-II activity at 2 mM. Altogether, this study emphasizes the importance of the non-hydrolysable phosphonate bond in the design of new competitive cN-II inhibitors and the crucial hydrophobic stacking promoted by three protein residues.


Assuntos
5'-Nucleotidase/antagonistas & inibidores , 5'-Nucleotidase/química , Ribonucleotídeos/química , 5'-Nucleotidase/metabolismo , Sítios de Ligação , Hidrólise , Inosina Monofosfato/química , Inosina Monofosfato/metabolismo , Modelos Moleculares , Ribonucleotídeos/metabolismo , Relação Estrutura-Atividade , Especificidade por Substrato
19.
J Immunol ; 184(12): 6920-8, 2010 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-20483757

RESUMO

Human Vgamma9Vdelta2 T lymphocytes are activated by phosphoantigens provided exogenously or produced by tumors and infected cells. Activation requires a contact between Vgamma9Vdelta2 cells and neighboring cells. We previously reported a role for cell surface F1-adenosine triphosphatase (ATPase) in T cell activation by tumors and specific interactions between Vgamma9Vdelta2 TCRs and purified F1-ATPase. 721.221 cells do not express surface F1-ATPase and do not support phosphoantigen responses unless they are rendered apoptotic by high doses of zoledronate, a treatment that promotes F1-expression as well as endogenous phosphoantigen production. By monitoring calcium flux in single cells, we show in this study that contact of T cells with F1-ATPase on polystyrene beads can partially replace the cell-cell contact stimulus during phosphoantigen responses. Triphosphoric acid 1-adenosin-5'-yl ester 3-(3-methylbut-3-enyl) ester, an adenylated derivative of isopentenyl pyrophosphate, can stably bind to F1-ATPase-coated beads and promotes TCR aggregation, lymphokine secretion, and activation of the cytolytic process provided that nucleotide pyrophosphatase activity is present. It also acts as an allosteric activator of F1-ATPase. In the absence of Vgamma9Vdelta2 cells, triphosphoric acid 1-adenosin-5'-yl ester 3-(3-methylbut-3-enyl) ester immobilized on F1-ATPase is protected from nucleotide pyrophosphatase activity, as is the antigenic activity of stimulatory target cells. Our experiments support the notion that Vgamma9Vdelta2 T cells are dedicated to the recognition of phosphoantigens on cell membranes in the form of nucleotide derivatives that can bind to F1-ATPase acting as a presentation molecule.


Assuntos
Adenosina Trifosfatases/imunologia , Apresentação de Antígeno/imunologia , Ativação Linfocitária/imunologia , Subpopulações de Linfócitos T/imunologia , Linfócitos T/imunologia , Adenosina Trifosfatases/metabolismo , Humanos , Microscopia Confocal , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Subpopulações de Linfócitos T/metabolismo , Linfócitos T/metabolismo
20.
Eur J Med Chem ; 227: 113914, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34695774

RESUMO

The synthesis and in vitro anti-HIV activity of a novel series of pronucleotides are reported. These prodrugs were characterized by a phosphorodithiolate structure, incorporating two O-pivaloyl-2-oxyethyl substituents as biolabile phosphate protections. The compounds were obtained following an original one-pot three-step procedure, involving the formation of a phosphorodithioite intermediate which is in situ oxidized. In vitro, comparative anti-HIV evaluations demonstrate that such original prodrugs are able to allow the efficient intracellular release of the corresponding 5'-mononucleotide. The pronucleotide of 2',3'-dideoxyadenosine (ddA) 3 exhibited a very potent antiretroviral effect with 50% effective concentration (EC50) values in nanomolar concentration range in various cell lines. In primary monocytes/macrophages, this derivative was 500 times more potent in inhibiting HIV replication (EC50 0.23 pM) than ddA and the selectivity index of the prodrug is fifty times higher than the one of the parent nucleoside.


Assuntos
Fármacos Anti-HIV/farmacologia , HIV-1/efeitos dos fármacos , Nucleosídeos/farmacologia , Pró-Fármacos/farmacologia , Compostos de Sulfidrila/farmacologia , Fármacos Anti-HIV/síntese química , Fármacos Anti-HIV/química , Células Cultivadas , Relação Dose-Resposta a Droga , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Nucleosídeos/síntese química , Nucleosídeos/química , Pró-Fármacos/síntese química , Pró-Fármacos/química , Relação Estrutura-Atividade , Compostos de Sulfidrila/síntese química , Compostos de Sulfidrila/química , Replicação Viral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa