Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Int J Mol Sci ; 24(6)2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36982845

RESUMO

Glioblastoma multiforme (GBM) is the most common and malignant brain tumor in adults. The invasiveness and the rapid progression that characterize GBM negatively impact patients' survival. Temozolomide (TMZ) is currently considered the first-choice chemotherapeutic agent. Unfortunately, over 50% of patients with GBM do not respond to TMZ treatment, and the mutation-prone nature of GBM enables the development of resistance mechanisms. Therefore, efforts have been devoted to the dissection of aberrant pathways involved in GBM insurgence and resistance in order to identify new therapeutic targets. Among them, sphingolipid signaling, Hedgehog (Hh) pathway, and the histone deacetylase 6 (HDAC6) activity are frequently dysregulated and may represent key targets to counteract GBM progression. Given the positive correlation between Hh/HDAC6/sphingolipid metabolism in GBM, we decided to perform a dual pharmacological inhibition of Hh and HDAC6 through cyclopamine and tubastatin A, respectively, in a human GMB cell line and zebrafish embryos. The combined administration of these compounds elicited a more significant reduction of GMB cell viability than did single treatments in vitro and in cells orthotopically transplanted in the zebrafish hindbrain ventricle. We demonstrated, for the first time, that the inhibition of these pathways induces lysosomal stress which results in an impaired fusion of lysosomes with autophagosomes and a block of sphingolipid degradation in GBM cell lines. This condition, which we also recapitulated in zebrafish embryos, suggests an impairment of lysosome-dependent processes involving autophagy and sphingolipid homeostasis and might be instrumental in the reduction of GBM progression.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Adulto , Animais , Humanos , Glioblastoma/metabolismo , Desacetilase 6 de Histona , Peixe-Zebra , Sobrevivência Celular , Proteínas Hedgehog , Temozolomida/farmacologia , Lisossomos/metabolismo , Esfingolipídeos , Linhagem Celular Tumoral , Neoplasias Encefálicas/metabolismo , Resistencia a Medicamentos Antineoplásicos
2.
Pharmacol Res ; 183: 106378, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35918044

RESUMO

Aberrant activation of the Hh pathway promotes cell proliferation and multi-drug resistance (MDR) in several cancers, including Acute Myeloid Leukemia (AML). Notably, only one Hh inhibitor, glasdegib, has been approved for AML treatment, and most patients eventually relapse, highlighting the urgent need to discover new therapeutic targets. Hh signal is transduced through the membrane of the primary cilium, a structure expressed by non-proliferating mammalian cells, whose stabilization depends on the activity of HDAC6. Here we describe a positive correlation between Hh, HDAC6, and MDR genes in a cohort of adult AML patients, human leukemic cell lines, and a zebrafish model of Hh overexpression. The hyper-activation of Hh or HDAC6 in zebrafish drove the increased proliferation of hematopoietic stem and progenitor cells (HSPCs). Interestingly, this phenotype was rescued by inhibition of HDAC6 but not of Hh. Also, in human leukemic cell lines, a reduction in vitality was obtained through HDAC6, but not Hh inhibition. Our data showed the presence of a cross-talk between Hh and HDAC6 mediated by stabilization of the primary cilium, which we detect for the first time in zebrafish HSPCs. Inhibition of HDAC6 activity alone or in combination therapy with the chemotherapeutic agent cytarabine, efficiently rescued the hematopoietic phenotype. Our results open the possibility to introduce HDAC6 as therapeutic target to reduce proliferation of leukemic blasts in AML patients.


Assuntos
Proteínas Hedgehog , Inibidores de Histona Desacetilases , Leucemia Mieloide Aguda , Adulto , Animais , Proliferação de Células , Proteínas Hedgehog/metabolismo , Células-Tronco Hematopoéticas , Desacetilase 6 de Histona/metabolismo , Inibidores de Histona Desacetilases/uso terapêutico , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/metabolismo , Transdução de Sinais , Peixe-Zebra/metabolismo
3.
J Cell Mol Med ; 24(11): 6272-6282, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32323916

RESUMO

The transcription factor RUNX1, a pivotal regulator of HSCs and haematopoiesis, is a frequent target of chromosomal translocations, point mutations or altered gene/protein dosage. These modifications lead or contribute to the development of myelodysplasia, leukaemia or platelet disorders. A better understanding of how regulatory elements contribute to fine-tune the RUNX1 expression in haematopoietic tissues could improve our knowledge of the mechanisms responsible for normal haematopoiesis and malignancy insurgence. The cohesin RAD21 was reported to be a regulator of RUNX1 expression in the human myeloid HL60 cell line and during primitive haematopoiesis in zebrafish. In our study, we demonstrate that another cohesin, NIPBL, exerts positive regulation of RUNX1 in three different contexts in which RUNX1 displays important functions: in megakaryocytes derived from healthy donors, in bone marrow samples obtained from adult patients with acute myeloid leukaemia and during zebrafish haematopoiesis. In this model, we demonstrate that alterations in the zebrafish orthologue nipblb reduce runx1 expression with consequent defects in its erythroid and myeloid targets such as gata1a and spi1b in an opposite way to rad21. Thus, also in the absence of RUNX1 translocation or mutations, additional factors such as defects in the expression of NIPBL might induce haematological diseases.


Assuntos
Proteínas de Ciclo Celular/genética , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Regulação Leucêmica da Expressão Gênica , Hematopoese/genética , Proteínas de Peixe-Zebra/genética , Adulto , Idoso , Animais , Células da Medula Óssea/metabolismo , Proteínas de Ciclo Celular/metabolismo , Criança , Estudos de Coortes , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Regulação para Baixo/genética , Humanos , Leucemia Mieloide Aguda/genética , Megacariócitos/metabolismo , Pessoa de Meia-Idade , Doadores de Tecidos , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
4.
J Cell Physiol ; 234(5): 6067-6076, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30246374

RESUMO

Histone deacetylase 8 (HDAC8) is a class 1 histone deacetylase and a member of the cohesin complex. HDAC8 is expressed in smooth muscles, but its expression in skeletal muscle has not been described. We have shown for the first time that HDAC8 is expressed in human and zebrafish skeletal muscles. Using RD/12 and RD/18 rhabdomyosarcoma cells with low and high differentiation potency, respectively, we highlighted a specific correlation with HDAC8 expression and an advanced stage of muscle differentiation. We inhibited HDAC8 activity through a specific PCI-34051 inhibitor in murine C2C12 myoblasts and zebrafish embryos, and we observed skeletal muscles differentiation impairment. We also found a positive regulation of the canonical Wnt signaling by HDAC8 that might explain muscle differentiation defects. These findings suggest a novel mechanism through which HDAC8 expression, in a specific time window of skeletal muscle development, positively regulates canonical Wnt pathway that is necessary for muscle differentiation.


Assuntos
Histona Desacetilases/metabolismo , Desenvolvimento Muscular/fisiologia , Músculo Esquelético/metabolismo , Proteínas Repressoras/metabolismo , Via de Sinalização Wnt/fisiologia , Animais , Diferenciação Celular/fisiologia , Humanos , Camundongos , Músculo Esquelético/citologia , Mioblastos/metabolismo , Peixe-Zebra
5.
Haematologica ; 104(7): 1332-1341, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30630974

RESUMO

The nucleophosmin 1 gene (NPM1) is the most frequently mutated gene in acute myeloid leukemia. Notably, NPM1 mutations are always accompanied by additional mutations such as those in cohesin genes RAD21, SMC1A, SMC3, and STAG2 but not in the cohesin regulator, nipped B-like (NIPBL). In this work, we analyzed a cohort of adult patients with acute myeloid leukemia and NPM1 mutation and observed a specific reduction in the expression of NIPBL but not in other cohesin genes. In our zebrafish model, overexpression of the mutated form of NPM1 also induced downregulation of nipblb, the zebrafish ortholog of human NIPBL To investigate the hematopoietic phenotype and the interaction between mutated NPM1 and nipblb, we generated a zebrafish model with nipblb downregulation which showed an increased number of myeloid progenitors. This phenotype was due to hyper-activation of the canonical Wnt pathway: myeloid cells blocked in an undifferentiated state could be rescued when the Wnt pathway was inhibited by dkk1b mRNA injection or indomethacin administration. Our results reveal, for the first time, a role for NIPBL during zebrafish hematopoiesis and suggest that an interplay between NIPBL/NPM1 may regulate myeloid differentiation in zebrafish and humans through the canonical Wnt pathway and that dysregulation of these interactions may drive leukemic transformation.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Diferenciação Celular , Proteínas Cromossômicas não Histona/metabolismo , Regulação Neoplásica da Expressão Gênica , Leucemia Mieloide Aguda/patologia , Mutação , Proteínas Nucleares/genética , Adulto , Animais , Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/genética , Embrião não Mamífero/metabolismo , Embrião não Mamífero/patologia , Hematopoese , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Nucleofosmina , Fenótipo , Via de Sinalização Wnt , Peixe-Zebra , Coesinas
6.
Commun Biol ; 7(1): 615, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38777862

RESUMO

Deficiency of adenosine deaminase 2 (DADA2) is an inborn error of immunity caused by loss-of-function mutations in the adenosine deaminase 2 (ADA2) gene. Clinical manifestations of DADA2 include vasculopathy and immuno-hematological abnormalities, culminating in bone marrow failure. A major gap exists in our knowledge of the regulatory functions of ADA2 during inflammation and hematopoiesis, mainly due to the absence of an ADA2 orthologue in rodents. Exploring these mechanisms is essential for understanding disease pathology and developing new treatments. Zebrafish possess two ADA2 orthologues, cecr1a and cecr1b, with the latter showing functional conservation with human ADA2. We establish a cecr1b-loss-of-function zebrafish model that recapitulates the immuno-hematological and vascular manifestations observed in humans. Loss of Cecr1b disrupts hematopoietic stem cell specification, resulting in defective hematopoiesis. This defect is caused by induced inflammation in the vascular endothelium. Blocking inflammation, pharmacological modulation of the A2r pathway, or the administration of the recombinant human ADA2 corrects these defects, providing insights into the mechanistic link between ADA2 deficiency, inflammation and immuno-hematological abnormalities. Our findings open up potential therapeutic avenues for DADA2 patients.


Assuntos
Adenosina Desaminase , Hematopoese , Células-Tronco Hematopoéticas , Inflamação , Peixe-Zebra , Animais , Peixe-Zebra/genética , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Adenosina Desaminase/deficiência , Células-Tronco Hematopoéticas/metabolismo , Inflamação/genética , Inflamação/metabolismo , Hematopoese/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Humanos , Transdução de Sinais , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo
7.
Cells ; 12(18)2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37759531

RESUMO

Mutations in the transcription factor-coding gene SOX18, the growth factor-coding gene VEGFC and its receptor-coding gene VEGFR3/FLT4 cause primary lymphedema in humans. In mammals, SOX18, together with COUP-TFII/NR2F2, activates the expression of Prox1, a master regulator in lymphatic identity and development. Knockdown studies have also suggested an involvement of Sox18, Coup-tfII/Nr2f2, and Prox1 in zebrafish lymphatic development. Mutants in the corresponding genes initially failed to recapitulate the lymphatic defects observed in morphants. In this paper, we describe a novel zebrafish sox18 mutant allele, sa12315, which behaves as a null. The formation of the lymphatic thoracic duct is affected in sox18 homozygous mutants, but defects are milder in both zygotic and maternal-zygotic sox18 mutants than in sox18 morphants. Remarkably, in sox18 mutants, the expression of the closely related sox7 gene is elevated where lymphatic precursors arise. Sox7 could thus mask the absence of a functional Sox18 protein and account for the mild lymphatic phenotype in sox18 mutants, as shown in mice. Partial knockdown of vegfc exacerbates lymphatic defects in sox18 mutants, making them visible in heterozygotes. Our data thus reinforce the genetic interaction between Sox18 and Vegfc in lymphatic development, previously suggested by knockdown studies, and highlight the ability of Sox7 to compensate for Sox18 lymphatic dysfunction.


Assuntos
Vasos Linfáticos , Fatores de Transcrição SOXF , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Humanos , Camundongos , Vasos Linfáticos/metabolismo , Transdução de Sinais/fisiologia , Fatores de Transcrição SOXF/genética , Fatores de Transcrição SOXF/metabolismo , Fatores de Transcrição/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo
8.
Eur J Med Chem ; 238: 114409, 2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35551034

RESUMO

The search of new therapeutic tools for the treatment of cancer is being a challenge for medicinal chemists. Due to their role in different pathological conditions, histone deacetylase (HDAC) enzymes are considered valuable therapeutic targets. HDAC6 is a well-investigated HDAC-class IIb enzyme mainly characterized by a cytoplasmic localization; HDAC8 is an epigenetic eraser, unique HDAC-class I member that displays some aminoacidic similarity to HDAC6. New polypharmacological agents for cancer treatment, based on a dual hHDAC6/hHDAC8 inhibition profile were developed. The dual inhibitor design investigated the diphenyl-azetidin-2-one scaffold, typified in three different structural families, that, combined to a slender benzyl linker (6c, 6i, and 6j), displays nanomolar inhibition potency against hHDAC6 and hHDAC8 isoforms. Notably, their selective action was also corroborated by measuring their low inhibitory potency towards hHDAC1 and hHDAC10. Selectivity of these compounds was further demonstrated in human cell-based western blots experiments, by testing the acetylation of the non-histone substrates alpha-tubulin and SMC3. Furthermore, the compounds reduced the proliferation of colorectal HCT116 and leukemia U937 cells, after 48 h of treatment. The toxicity of the compounds was evaluated in rat perfused heart and in zebrafish embryos. In this latter model we also validated the efficacy of the dual hHDAC6/hHDAC8 inhibitors against their common target acetylated-alpha tubulin. Finally, the metabolic stability was verified in rat, mouse, and human liver microsomes.


Assuntos
Inibidores de Histona Desacetilases , Ácidos Hidroxâmicos , Animais , Sobrevivência Celular , Desacetilase 6 de Histona , Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Humanos , Ácidos Hidroxâmicos/química , Camundongos , Ratos , Proteínas Repressoras , Tubulina (Proteína)/metabolismo , Peixe-Zebra/metabolismo
9.
Nat Commun ; 12(1): 4872, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34381052

RESUMO

The Netrin-1 receptor UNC5B is an axon guidance regulator that is also expressed in endothelial cells (ECs), where it finely controls developmental and tumor angiogenesis. In the absence of Netrin-1, UNC5B induces apoptosis that is blocked upon Netrin-1 binding. Here, we identify an UNC5B splicing isoform (called UNC5B-Δ8) expressed exclusively by ECs and generated through exon skipping by NOVA2, an alternative splicing factor regulating vascular development. We show that UNC5B-Δ8 is a constitutively pro-apoptotic splicing isoform insensitive to Netrin-1 and required for specific blood vessel development in an apoptosis-dependent manner. Like NOVA2, UNC5B-Δ8 is aberrantly expressed in colon cancer vasculature where its expression correlates with tumor angiogenesis and poor patient outcome. Collectively, our data identify a mechanism controlling UNC5B's necessary apoptotic function in ECs and suggest that the NOVA2/UNC5B circuit represents a post-transcriptional pathway regulating angiogenesis.


Assuntos
Apoptose , Vasos Sanguíneos/crescimento & desenvolvimento , Receptores de Netrina/metabolismo , Isoformas de RNA/metabolismo , Processamento Alternativo , Animais , Neoplasias do Colo/irrigação sanguínea , Neoplasias do Colo/metabolismo , Células Endoteliais , Humanos , Morfogênese , Neovascularização Patológica/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Receptores de Netrina/genética , Netrina-1/metabolismo , Antígeno Neuro-Oncológico Ventral , Isoformas de RNA/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Análise de Sobrevida , Peixe-Zebra
10.
Front Cell Dev Biol ; 7: 21, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30873408

RESUMO

The genes of the cohesin complex exert different functions, ranging from the adhesion of sister chromatids during the cell cycle, DNA repair, gene expression and chromatin architecture remodeling. In recent years, the improvement of DNA sequencing technologies allows the identification of cohesin mutations in different tumors such as acute myeloid leukemia (AML), acute megakaryoblastic leukemia (AMKL), and myelodysplastic syndromes (MDS). However, the role of cohesin dysfunction in cancer insurgence remains elusive. In this regard, cells harboring cohesin mutations do not show any increase in aneuploidy that might explain their oncogenic activity, nor cohesin mutations are sufficient to induce myeloid neoplasms as they have to co-occur with other causative mutations such as NPM1, FLT3-ITD, and DNMT3A. Several works, also using animal models for cohesin haploinsufficiency, correlate cohesin activity with dysregulated expression of genes involved in myeloid development and differentiation. These evidences support the involvement of cohesin mutations in myeloid neoplasms.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa