Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38339073

RESUMO

Uveal melanoma (UM) is the most common primary intraocular malignancy with a limited five-year survival for metastatic patients. Limited therapeutic treatments are currently available for metastatic disease, even if the genomics of this tumor has been deeply studied using next-generation sequencing (NGS) and functional experiments. The profound knowledge of the molecular features that characterize this tumor has not led to the development of efficacious therapies, and the survival of metastatic patients has not changed for decades. Several bioinformatics methods have been applied to mine NGS tumor data in order to unveil tumor biology and detect possible molecular targets for new therapies. Each application can be single domain based while others are more focused on data integration from multiple genomics domains (as gene expression and methylation data). Examples of single domain approaches include differentially expressed gene (DEG) analysis on gene expression data with statistical methods such as SAM (significance analysis of microarray) or gene prioritization with complex algorithms such as deep learning. Data fusion or integration methods merge multiple domains of information to define new clusters of patients or to detect relevant genes, according to multiple NGS data. In this work, we compare different strategies to detect relevant genes for metastatic disease prediction in the TCGA uveal melanoma (UVM) dataset. Detected targets are validated with multi-gene score analysis on a larger UM microarray dataset.


Assuntos
Melanoma , Neoplasias Uveais , Humanos , Melanoma/patologia , Neoplasias Uveais/patologia , Análise em Microsséries
2.
J Allergy Clin Immunol ; 150(4): 796-805, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35835255

RESUMO

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection may result in a severe pneumonia associated with elevation of blood inflammatory parameters, reminiscent of cytokine storm syndrome. Steroidal anti-inflammatory therapies have shown efficacy in reducing mortality in critically ill patients; however, the mechanisms by which SARS-CoV-2 triggers such an extensive inflammation remain unexplained. OBJECTIVES: To dissect the mechanisms underlying SARS-CoV-2-associated inflammation in patients with severe coronavirus disease 2019 (COVID-19), we studied the role of IL-1ß, a pivotal cytokine driving inflammatory phenotypes, whose maturation and secretion are regulated by inflammasomes. METHODS: We analyzed nod-like receptor protein 3 pathway activation by means of confocal microscopy, plasma cytokine measurement, cytokine secretion following in vitro stimulation of blood circulating monocytes, and whole-blood RNA sequencing. The role of open reading frame 3a SARS-CoV-2 protein was assessed by confocal microscopy analysis following nucleofection of a monocytic cell line. RESULTS: We found that circulating monocytes from patients with COVID-19 display ASC (adaptor molecule apoptotic speck like protein-containing a CARD) specks that colocalize with nod-like receptor protein 3 inflammasome and spontaneously secrete IL-1ß in vitro. This spontaneous activation reverts following patient's treatment with the IL-1 receptor antagonist anakinra. Transfection of a monocytic cell line with cDNA coding for the ORF3a SARS-CoV-2 protein resulted in ASC speck formation. CONCLUSIONS: These results provide further evidence that IL-1ß targeting could represent an effective strategy in this disease and suggest a mechanistic explanation for the strong inflammatory manifestations associated with COVID-19.


Assuntos
Tratamento Farmacológico da COVID-19 , Inflamassomos , Anti-Inflamatórios , Síndrome da Liberação de Citocina/tratamento farmacológico , Citocinas/metabolismo , DNA Complementar , Humanos , Inflamassomos/metabolismo , Proteína Antagonista do Receptor de Interleucina 1/uso terapêutico , Interleucina-1beta/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas NLR , Receptores de Interleucina-1 , SARS-CoV-2
3.
Int J Mol Sci ; 24(21)2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37958591

RESUMO

The metastatic risk of uveal melanoma (UM) is defined by a limited number of molecular lesions, somatic mutations (SF3B1 and BAP1), and copy number alterations (CNA): monosomy of chromosome 3 (M3), chr8q gain (8q), chr6p gain (6p), yet the sequence of events is not clear. We analyzed data from three datasets (TCGA-UVM, GSE27831, GSE51880) with information regarding M3, 8q, 6p, SF3B1, and BAP1 status. We confirm that BAP1 mutations are always associated with M3 in high-risk patients. All other features (6p, 8q, M3, SF3B1 mutation) were present independently from each other. Chr8q gain was frequently associated with chr3 disomy. Hierarchical clustering of gene expression data of samples with different binary combinations of aggressivity factors shows that patients with 8q|M3, BAP1|M3 form one cluster enriched in samples that developed metastases. Patients with 6p combined with either 8q or SF3B1 are mainly represented in the other, low-risk cluster. Several gene expression events that show a non-significant association with outcome when considering single features become significant when analyzing combinations of risk features indicating additive action. The independence of risk factors is consistent with a random risk model of UM metastasis without an obligatory sequence.


Assuntos
Melanoma , Neoplasias Uveais , Humanos , Proteínas Supressoras de Tumor/genética , Neoplasias Uveais/patologia , Melanoma/metabolismo , Mutação , Ubiquitina Tiolesterase/genética
4.
Small ; 16(20): e1906426, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32323486

RESUMO

Neuroblastoma (NB) tumor substantially contributes to childhood cancer mortality. The design of novel drugs targeted to specific molecular alterations becomes mandatory, especially for high-risk patients burdened by chemoresistant relapse. The dysregulated expression of MYCN, ALK, and LIN28B and the diminished levels of miR-34a and let-7b are oncogenic in NB. Due to the ability of miRNA-mimics to recover the tumor suppression functions of miRNAs underexpressed into cancer cells, safe and efficient nanocarriers selectively targeted to NB cells and tested in clinically relevant mouse models are developed. The technology exploits the nucleic acids negative charges to build coated-cationic liposomes, then functionalized with antibodies against GD2 receptor. The replenishment of miR-34a and let-7b by NB-targeted nanoparticles, individually and more powerfully in combination, significantly reduces cell division, proliferation, neoangiogenesis, tumor growth and burden, and induces apoptosis in orthotopic xenografts and improves mice survival in pseudometastatic models. These functional effects highlight a cooperative down-modulation of MYCN and its down-stream targets, ALK and LIN28B, exerted by miR-34a and let-7b that reactivate regulatory networks leading to a favorable therapeutic response. These findings demonstrate a promising therapeutic efficacy of miR-34a and let-7b combined replacement and support its clinical application as adjuvant therapy for high-risk NB patients.


Assuntos
MicroRNAs , Nanopartículas , Neuroblastoma , Animais , Linhagem Celular Tumoral , Proliferação de Células , Criança , Humanos , Camundongos , MicroRNAs/genética , Recidiva Local de Neoplasia , Proteínas de Ligação a RNA
5.
Haematologica ; 105(5): 1317-1328, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31467126

RESUMO

Despite substantial progress in treatment of T-cell acute lymphoblastic leukemia (T-ALL), mortality remains relatively high, mainly due to primary or acquired resistance to chemotherapy. Further improvements in survival demand better understanding of T-ALL biology and development of new therapeutic strategies. The Notch pathway has been involved in the pathogenesis of this disease and various therapeutic strategies are currently under development, including selective targeting of NOTCH receptors by inhibitory antibodies. We previously demonstrated that the NOTCH1-specific neutralizing antibody OMP52M51 prolongs survival in TALL patient-derived xenografts bearing NOTCH1/FBW7 mutations. However, acquired resistance to OMP52M51 eventually developed and we used patient-derived xenografts models to investigate this phenomenon. Multi-level molecular characterization of T-ALL cells resistant to NOTCH1 blockade and serial transplantation experiments uncovered heterogeneous types of resistance, not previously reported with other Notch inhibitors. In one model, resistance appeared after 156 days of treatment, it was stable and associated with loss of Notch inhibition, reduced mutational load and acquired NOTCH1 mutations potentially affecting the stability of the heterodimerization domain. Conversely, in another model resistance developed after only 43 days of treatment despite persistent down-regulation of Notch signaling and it was accompanied by modulation of lipid metabolism and reduced surface expression of NOTCH1. Our findings shed light on heterogeneous mechanisms adopted by the tumor to evade NOTCH1 blockade and support clinical implementation of antibody-based target therapy for Notch-addicted tumors.


Assuntos
Leucemia-Linfoma Linfoblástico de Células T Precursoras , Animais , Humanos , Camundongos Endogâmicos NOD , Camundongos SCID , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Receptor Notch1/genética , Transdução de Sinais , Linfócitos T , Ensaios Antitumorais Modelo de Xenoenxerto
6.
BMC Bioinformatics ; 20(Suppl 4): 125, 2019 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-30999855

RESUMO

The 17th International NETTAB workshop was held in Palermo, Italy, on October 16-18, 2017. The special topic for the meeting was "Methods, tools and platforms for Personalised Medicine in the Big Data Era", but the traditional topics of the meeting series were also included in the event. About 40 scientific contributions were presented, including four keynote lectures, five guest lectures, and many oral communications and posters. Also, three tutorials were organised before and after the workshop. Full papers from some of the best works presented in Palermo were submitted for this Supplement of BMC Bioinformatics. Here, we provide an overview of meeting aims and scope. We also shortly introduce selected papers that have been accepted for publication in this Supplement, for a complete presentation of the outcomes of the meeting.


Assuntos
Biologia Computacional/métodos , Atenção à Saúde , Genômica , Humanos , Itália , Neoplasias/genética , Medicina de Precisão
7.
Carcinogenesis ; 39(9): 1141-1150, 2018 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-29860383

RESUMO

Curcumin has been reported to inhibit inflammation, tumor growth, angiogenesis and metastasis by decreasing cell growth and by inducing apoptosis mainly through the inhibition of nuclear factor kappa-B (NFκB), a master regulator of inflammation. Recent reports also indicate potential metabolic effects of the polyphenol, therefore we analyzed whether and how it affects the energy metabolism of tumor cells. We show that curcumin (10 µM) inhibits the activity of ATP synthase in isolated mitochondrial membranes leading to a dramatic drop of ATP and a reduction of oxygen consumption in in vitro and in vivo tumor models. The effects of curcumin on ATP synthase are independent of the inhibition of NFκB since the IκB Kinase inhibitor, SC-514, does not affect ATP synthase. The activities of the glycolytic enzymes hexokinase, phosphofructokinase, pyruvate kinase and lactate dehydrogenase are only slightly affected in a cell type-specific manner. The energy impairment translates into decreased tumor cell viability. Moreover, curcumin induces apoptosis by promoting the generation of reactive oxygen species (ROS) and malondialdehyde (MDA), a marker of lipid oxidation, and autophagy, at least in part due to the activation of the AMP-activated protein kinase (AMPK). According to the in vitro anti-tumor effect, curcumin (30 mg/kg body weight) significantly delayed in vivo cancer growth likely due to an energy impairment but also through the reduction of tumor angiogenesis. These results establish the ATP synthase, a central enzyme of the cellular energy metabolism, as a target of the antitumoral polyphenol leading to inhibition of cancer cell growth and a general reprogramming of tumor metabolism.


Assuntos
Antineoplásicos/uso terapêutico , Curcumina/uso terapêutico , Metabolismo Energético/efeitos dos fármacos , ATPases Mitocondriais Próton-Translocadoras/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Consumo de Oxigênio/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Feminino , Hexoquinase/metabolismo , Quinase I-kappa B/antagonistas & inibidores , L-Lactato Desidrogenase/metabolismo , Malondialdeído/metabolismo , Camundongos , Camundongos Nus , Neovascularização Patológica/tratamento farmacológico , Fosfofrutoquinases/metabolismo , Piruvato Quinase/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Tiofenos/farmacologia
8.
Cancer Metastasis Rev ; 36(1): 109-140, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28229253

RESUMO

Uveal melanoma (UM), a rare cancer of the eye, is distinct from cutaneous melanoma by its etiology, the mutation frequency and profile, and its clinical behavior including resistance to targeted therapy and immune checkpoint blockers. Primary disease is efficiently controlled by surgery or radiation therapy, but about half of UMs develop distant metastasis mostly to the liver. Survival of patients with metastasis is below 1 year and has not improved in decades. Recent years have brought a deep understanding of UM biology characterized by initiating mutations in the G proteins GNAQ and GNA11. Cytogenetic alterations, in particular monosomy of chromosome 3 and amplification of the long arm of chromosome 8, and mutation of the BRCA1-associated protein 1, BAP1, a tumor suppressor gene, or the splicing factor SF3B1 determine UM metastasis. Cytogenetic and molecular profiling allow for a very precise prognostication that is still not matched by efficacious adjuvant therapies. G protein signaling has been shown to activate the YAP/TAZ pathway independent of HIPPO, and conventional signaling via the mitogen-activated kinase pathway probably also contributes to UM development and progression. Several lines of evidence indicate that inflammation and macrophages play a pro-tumor role in UM and in its hepatic metastases. UM cells benefit from the immune privilege in the eye and may adopt several mechanisms involved in this privilege for tumor escape that act even after leaving the niche. Here, we review the current knowledge of the biology of UM and discuss recent approaches to UM treatment.


Assuntos
Melanoma/patologia , Melanoma/terapia , Neoplasias Uveais/patologia , Neoplasias Uveais/terapia , Animais , Humanos , Melanoma/metabolismo , Neoplasias Uveais/metabolismo
9.
Cancer Metastasis Rev ; 35(1): 63-74, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26947218

RESUMO

Colorectal cancer is characterized by exquisite genomic instability either in the form of microsatellite instability or chromosomal instability. Microsatellite instability is the result of mutation of mismatch repair genes or their silencing through promoter methylation as a consequence of the CpG island methylator phenotype. The molecular causes of chromosomal instability are less well characterized. Genomic instability and field cancerization lead to a high degree of intratumoral heterogeneity and determine the formation of cancer stem cells and epithelial-mesenchymal transition mediated by the TGF-ß and APC pathways. Recent analyses using integrated genomics reveal different phases of colorectal cancer evolution. An initial phase of genomic instability that yields many clones with different mutations (big bang) is followed by an important, previously not detected phase of cancer evolution that consists in the stabilization of several clones and a relatively flat outgrowth. The big bang model can best explain the coexistence of several stable clones and is compatible with the fact that the analysis of the bulk of the primary tumor yields prognostic information.


Assuntos
Carcinogênese/genética , Neoplasias Colorretais/genética , Evolução Molecular , Carcinogênese/patologia , Neoplasias Colorretais/patologia , Ilhas de CpG , Metilação de DNA/genética , Humanos , Instabilidade de Microssatélites , Mutação
10.
Clin Exp Rheumatol ; 34(6 Suppl 102): S121-S128, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27310036

RESUMO

OBJECTIVES: Tumour necrosis factor (TNF) receptor-associated periodic syndrome (TRAPS) is a multisystemic autoinflammatory condition associated with heterozygous TNFRSF1A mutations, presenting with a variety of clinical symptoms, many of which yet unexplained. In this work, we aimed at deepening into TRAPS pathogenic mechanisms sustained by monocytes. METHODS: Microarray experiments were conducted to identify genes whose expression results altered in patients compared to healthy individuals, both under basal condition and following LPS stimulation. RESULTS: An inflammatory state baseline, characterised by constitutive overexpression of IL1ß and IL1R1 receptor, has been shown in TRAPS patients compared to controls, including in non-active disease phases. Following LPS stimulation, IL1RN up-regulation is stronger in controls than in patients and inflammatory pathways and microRNAs undergo differential regulation. Genes involved in post-translational modifications, protein folding and ubiquitination result constitutively up-regulated in TRAPS, while response to interferon types I and II is defective, failing to be up-regulated by LPS. TGFß pathway is down-regulated in untreated TRAPS monocytes, while genes involved in redox regulation result constitutively over-expressed. Finally, additional molecular alterations seem to reflect organ failures sometime complicating the disease. CONCLUSIONS: Gene expression profile in resting TRAPS monocytes has confirmed the patients' chronic inflammatory condition. In addition, pathways not yet associated with the disease have been disclosed, such as interferon types I and II response to LPS stimulation and a downregulation of the TGFß pathway in basal condition. The role of miRNA, suggested by our results, deserves in-depth analyses in light of the possible development of targeted therapies.


Assuntos
Febre/genética , Regulação da Expressão Gênica , Doenças Hereditárias Autoinflamatórias/genética , Mediadores da Inflamação/metabolismo , Monócitos/metabolismo , Adolescente , Estudos de Casos e Controles , Criança , Pré-Escolar , Feminino , Febre/diagnóstico , Febre/imunologia , Febre/metabolismo , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica/efeitos dos fármacos , Estudos de Associação Genética , Marcadores Genéticos , Predisposição Genética para Doença , Doenças Hereditárias Autoinflamatórias/diagnóstico , Doenças Hereditárias Autoinflamatórias/imunologia , Doenças Hereditárias Autoinflamatórias/metabolismo , Heterozigoto , Humanos , Mediadores da Inflamação/imunologia , Proteína Antagonista do Receptor de Interleucina 1/genética , Proteína Antagonista do Receptor de Interleucina 1/metabolismo , Lipopolissacarídeos/farmacologia , Masculino , Monócitos/efeitos dos fármacos , Monócitos/imunologia , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Reação em Cadeia da Polimerase , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Receptores Tipo I de Fatores de Necrose Tumoral/imunologia , Reprodutibilidade dos Testes
11.
Cancer Metastasis Rev ; 33(2-3): 657-71, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24477410

RESUMO

Biomarkers are important for early detection of cancer, prognosis, response prediction, and detection of residual or relapsing disease. Special attention has been given to diagnostic markers for prostate cancer since it is thought that early detection and surgery might reduce prostate cancer-specific mortality. The use of prostate-specific antigen, PSA (KLK3), has been debated on the base of cohort studies that show that its use in preventive screenings only marginally influences mortality from prostate cancer. Many groups have identified alternative or additional markers, among which PCA3, in order to detect early prostate cancer through screening, to distinguish potentially lethal from indolent prostate cancers, and to guide the treatment decision. The large number of markers proposed has led us to the present study in which we analyze these indicators for their diagnostic and prognostic potential using publicly available genomic data. We identified 380 markers from literature analysis on 20,000 articles on prostate cancer markers. The most interesting ones appeared to be claudin 3 (CLDN3) and alpha-methysacyl-CoA racemase highly expressed in prostate cancer and filamin C (FLNC) and keratin 5 with highest expression in normal prostate tissue. None of the markers proposed can compete with PSA for tissue specificity. The indicators proposed generally show a great variability of expression in normal and tumor tissue or are expressed at similar levels in other tissues. Those proposed as prognostic markers distinguish cases with marginally different risk of progression and appear to have a clinically limited use. We used data sets sampling 152 prostate tissues, data sets with 281 prostate cancers analyzed by microarray analysis and a study of integrated genomics on 218 cases to develop a multigene score. A multivariate model that combines several indicators increases the discrimination power but does not add impressively to the information obtained from Gleason scoring. This analysis of 10 years of marker research suggests that diagnostic and prognostic testing is more difficult in prostate cancer than in other neoplasms and that we must continue to search for better candidates.


Assuntos
Biomarcadores Tumorais , Regulação Neoplásica da Expressão Gênica , Neoplasias da Próstata/genética , Análise por Conglomerados , Conjuntos de Dados como Assunto , Perfilação da Expressão Gênica , Humanos , Masculino , Análise Multivariada , Gradação de Tumores , Prognóstico , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/mortalidade , Neoplasias da Próstata/patologia , Reprodutibilidade dos Testes
12.
Carcinogenesis ; 35(5): 1055-66, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24419232

RESUMO

The biguanide metformin is used in type 2 diabetes management and has gained significant attention as a potential cancer preventive agent. Angioprevention represents a mechanism of chemoprevention, yet conflicting data concerning the antiangiogenic action of metformin have emerged. Here, we clarify some of the contradictory effects of metformin on endothelial cells and angiogenesis, using in vitro and in vivo assays combined with transcriptomic and protein array approaches. Metformin inhibits formation of capillary-like networks by endothelial cells; this effect is partially dependent on the energy sensor adenosine-monophosphate-activated protein kinase (AMPK) as shown by small interfering RNA knockdown. Gene expression profiling of human umbilical vein endothelial cells revealed a paradoxical modulation of several angiogenesis-associated genes and proteins by metformin, with short-term induction of vascular endothelial growth factor (VEGF), cyclooxygenase 2 and CXC chemokine receptor 4 at the messenger RNA level and downregulation of ADAMTS1. Antibody array analysis shows an essentially opposite regulation of numerous angiogenesis-associated proteins in endothelial and breast cancer cells including interleukin-8, angiogenin and TIMP-1, as well as selective regulation of angiopioetin-1, -2, endoglin and others. Endothelial cell production of the cytochrome P450 member CYP1B1 is upregulated by tumor cell supernatants in an AMPK-dependent manner, metformin blocks this effect. Metformin inhibits VEGF-dependent activation of extracellular signal-regulated kinase 1/2, and the inhibition of AMPK activity abrogates this event. Metformin hinders angiogenesis in matrigel pellets in vivo, prevents the microvessel density increase observed in obese mice on a high-fat diet, downregulating the number of white adipose tissue endothelial precursor cells. Our data show that metformin has an antiangiogenic activity in vitro and in vivo associated with a contradictory short-term enhancement of pro-angiogenic mediators, as well as with a differential regulation in endothelial and breast cancer cells.


Assuntos
Inibidores da Angiogênese/farmacologia , Células Endoteliais/efeitos dos fármacos , Metformina/farmacologia , Neovascularização Fisiológica/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Tecido Adiposo/citologia , Tecido Adiposo/efeitos dos fármacos , Animais , Antineoplásicos/farmacologia , Hidrocarboneto de Aril Hidroxilases/genética , Hidrocarboneto de Aril Hidroxilases/metabolismo , Análise por Conglomerados , Citocromo P-450 CYP1B1 , Modelos Animais de Doenças , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Ativação Enzimática/efeitos dos fármacos , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Camundongos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Neovascularização Fisiológica/genética , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Fator A de Crescimento do Endotélio Vascular/farmacologia
13.
Mol Cancer ; 12(1): 97, 2013 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-23988223

RESUMO

BACKGROUND: Glycolysis in presence of oxygen with high glucose consumption is known to be the metabolism of choice in many tumors. In lung cancer this phenomenon is routinely exploited in diagnostic PET imaging of fluorodeoxyglucose uptake, but not much is known about the prognostic capabilities of glycolysis level assessment in resected lung tumor samples. METHODS: In this retrospective study, we used real time polymerase chain reaction(RQ-PCR) to assess the expression level of the gene for Glyceraldehyde 3-phosphate dehydrogenase(GAPDH), key enzyme for glucose breakdown, in tumor samples from 82 consecutive early stages resected non small cell lung cancer(NSCLC) patients. We then compared our results in six large publicly available NSCLC microarray datasets collecting data from over 1250 total patients. RESULTS: In our study GAPDH gene over expression was found to be an adverse prognostic factor in early stages NSCLC (n = 82 HR = 1.30 p = 0.050). This result was confirmed in 5 of 6 public datasets analyzed: Shedden et al. 2008: n = 442 HR = 1.54 p < 0.0001; Lee et al. 2008: n = 138 HR = 1.31 p = 0.043; Tomida et al. 2009: n = 117 HR = 1.59 p = 0.004; Roepman et al. 2009: n = 172 (TPI1 gene) HR = 1.51 p = 0.009; Okayama et al. 2012: n = 226 HR = 3.19 p < 0.0001; Botling et al. 2013: n = 196 HR = 1.00 p = 0.97). Furthermore, in the large and clinically well annotated Shedden et al. microarray dataset, GAPDH hazard ratio did not change whether calculated for the whole dataset or for the subgroup of adjuvant naive patients only (n = 330 HR = 1.49 p < 0.0001). CONCLUSION: GAPDH gene over expression in resected tumor samples is an adverse prognostic factor in NSCLC. Our results confirm the prognostic value of glucose metabolism assessment in NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/enzimologia , Expressão Gênica , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/metabolismo , Neoplasias Pulmonares/enzimologia , Idoso , Idoso de 80 Anos ou mais , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Feminino , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/genética , Humanos , Estimativa de Kaplan-Meier , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/mortalidade , Masculino , Pessoa de Meia-Idade , Prognóstico , Modelos de Riscos Proporcionais , Estudos Retrospectivos
15.
Cancers (Basel) ; 15(19)2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37835454

RESUMO

Before a tumor is diagnosed and surgically removed, it has been growing for many months or even years [...].

16.
Exp Hematol Oncol ; 12(1): 76, 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37667380

RESUMO

T-cell acute lymphoblastic leukemia (T-ALL) is a hematologic tumor, characterized by several genetic alterations, that constitutes 15% of pediatric and 25% of adult ALL. While with current therapeutic protocols children and adults' overall survival (OS) rates reach 85-90% and 40-50%, respectively, the outcome for both pediatric and adult T-ALL patients that relapse or are refractory to induction therapy, remains extremely poor, achieving around 25% OS for both patient groups. About 60% of T-ALL patients show increased NOTCH1 activity, due to activating NOTCH1 mutations or alterations in its ubiquitin ligase FBXW7. NOTCH signaling has been shown to contribute to chemotherapy resistance in some tumor models. Hence, targeting the NOTCH1 signaling pathway may be an effective option to overcome relapsed and refractory T-ALL.Here, we focused on the therapeutic activity of the NOTCH1-specific monoclonal antibody OMP-52M51 in combination either with drugs used during the induction, consolidation, or maintenance phase in mice xenografts established from pediatric and adult relapsed NOTCH1 mutated T-ALL samples. Interestingly, from RNAseq data we observed that anti-NOTCH1 treatment in vivo affects the purine metabolic pathway. In agreement, both in vitro and in vivo, the greatest effect on leukemia growth reduction was achieved by anti-NOTCH1 therapy in combination with antimetabolite drugs. This result was further corroborated by the longer life span of mice treated with the anti-NOTCH1 in combination with antimetabolites, indicating a novel Notch-targeted therapeutic approach that could ameliorate pediatric and adult T-ALL patients outcome with relapse disease for whom so far, no other therapeutic options are available.

17.
Cancers (Basel) ; 15(3)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36765842

RESUMO

BACKGROUND: Metastatic uveal melanoma (MUM) is a highly aggressive, therapy-resistant disease. Driver mutations in Gα-proteins GNAQ and GNA11 activate MAP-kinase and YAP/TAZ pathways of oncogenic signalling. MAP-kinase and MEK-inhibitors do not significantly block MUM progression, likely due to persisting YAP/TAZ signalling. Statins inhibit YAP/TAZ activation by blocking the mevalonate pathway, geranyl-geranylation, and subcellular localisation of the Rho-GTPase. We investigated drugs that affect the YAP/TAZ pathway, valproic acid, verteporfin and statins, in combination with MEK-inhibitor trametinib. METHODS: We established IC50 values of the individual drugs and monitored the effects of their combinations in terms of proliferation. We selected trametinib and cerivastatin for evaluation of cell cycle and apoptosis. Synergism was detected using isobologram and Chou-Talalay analyses. The most synergistic combination was tested in vivo. RESULTS: Synergistic concentrations of trametinib and cerivastatin induced a massive arrest of proliferation and cell cycle and enhanced apoptosis, particularly in the monosomic, BAP1-mutated UPMM3 cell line. The combined treatment reduced ERK and AKT phosphorylation, increased the inactive, cytoplasmatic form of YAP and significantly impaired the growth of UM cells with monosomy of chromosome 3 in NSG mice. CONCLUSION: Statins can potentiate the efficacy of MEK inhibitors in the therapy of UM.

18.
J Exp Clin Cancer Res ; 42(1): 67, 2023 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-36934257

RESUMO

BACKGROUND: The combination of Programmed Cell Death 1 (PD-1) and Cytotoxic T-Lymphocyte Antigen 4 (CTLA-4) blockade has dramatically improved the overall survival rate for malignant melanoma. Immune checkpoint blockers (ICBs) limit the tumor's immune escape yet only for approximately a third of all tumors and, in most cases, for a limited amount of time. Several approaches to overcome resistance to ICBs are being investigated among which the addition of epigenetic drugs that are expected to act on both immune and tumor cells. Guadecitabine, a dinucleotide prodrug of a decitabine linked via phosphodiester bond to a guanosine, showed promising results in the phase-1 clinical trial, NIBIT-M4 (NCT02608437). METHODS: We used the syngeneic B16F10 murine melanoma model to study the effects of immune checkpoint blocking antibodies against CTLA-4 and PD-1 in combination, with and without the addition of Guadecitabine. We comprehensively characterized the tumor's and the host's responses under different treatments by flow cytometry, multiplex immunofluorescence and methylation analysis. RESULTS: In combination with ICBs, Guadecitabine significantly reduced subcutaneous tumor growth as well as metastases formation compared to ICBs and Guadecitabine treatment. In particular, Guadecitabine greatly enhanced the efficacy of combined ICBs by increasing effector memory CD8+ T cells, inducing effector NK cells in the spleen and reducing tumor infiltrating regulatory T cells and myeloid derived suppressor cells (MDSC), in the tumor microenvironment (TME). Guadecitabine in association with ICBs increased serum levels of IFN-γ and IFN-γ-induced chemokines with anti-angiogenic activity. Guadecitabine led to a general DNA-demethylation, in particular of sites of intermediate methylation levels. CONCLUSIONS: These results indicate Guadecitabine as a promising epigenetic drug to be added to ICBs therapy.


Assuntos
Melanoma , Células Supressoras Mieloides , Animais , Camundongos , Antígeno CTLA-4 , Melanoma/patologia , Linfócitos T Reguladores , Células Matadoras Naturais/patologia , Microambiente Tumoral
19.
Carcinogenesis ; 33(12): 2507-19, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23042094

RESUMO

In America and Western Europe, prostate cancer is the second leading cause of death in men. Emerging evidence suggests that chronic inflammation is a major risk factor for the development and metastatic progression of prostate cancer. We previously reported that the chemopreventive polyphenol curcumin inhibits the expression of the proinflammatory cytokines CXCL1 and -2 leading to diminished formation of breast cancer metastases. In this study, we analyze the effects of curcumin on prostate carcinoma growth, apoptosis and metastasis. We show that curcumin inhibits translocation of NFκB to the nucleus through the inhibition of the IκB-kinase (IKKß, leading to stabilization of the inhibitor of NFκB, IκBα, in PC-3 prostate carcinoma cells. Inhibition of NFκB activity reduces expression of CXCL1 and -2 and abolishes the autocrine/paracrine loop that links the two chemokines to NFκB. The combination of curcumin with the synthetic IKKß inhibitor, SC-541, shows no additive or synergistic effects indicating that the two compounds share the target. Treatment of the cells with curcumin and siRNA-based knockdown of CXCL1 and -2 induce apoptosis, inhibit proliferation and downregulate several important metastasis-promoting factors like COX2, SPARC and EFEMP. In an orthotopic mouse model of hematogenous metastasis, treatment with curcumin inhibits statistically significantly formation of lung metastases. In conclusion, chronic inflammation can induce a metastasis prone phenotype in prostate cancer cells by maintaining a positive proinflammatory and prometastatic feedback loop between NFκB and CXCL1/-2. Curcumin disrupts this feedback loop by the inhibition of NFκB signaling leading to reduced metastasis formation in vivo.


Assuntos
Antineoplásicos/uso terapêutico , Quimiocina CXCL1/antagonistas & inibidores , Quimiocina CXCL2/antagonistas & inibidores , Curcumina/uso terapêutico , Neoplasias da Próstata/tratamento farmacológico , Animais , Apoptose , Linhagem Celular Tumoral , Quimiocina CXCL1/genética , Quimiocina CXCL2/genética , Humanos , Masculino , Camundongos , NF-kappa B/antagonistas & inibidores , NF-kappa B/fisiologia , Metástase Neoplásica , Neoplasias da Próstata/patologia , Transdução de Sinais , Ensaios Antitumorais Modelo de Xenoenxerto
20.
BMC Cancer ; 12: 358, 2012 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-22901239

RESUMO

BACKGROUND: Most patients affected by Glioblastoma multiforme (GBM, grade IV glioma) experience a recurrence of the disease because of the spreading of tumor cells beyond surgical boundaries. Unveiling mechanisms causing this process is a logic goal to impair the killing capacity of GBM cells by molecular targeting.We noticed that our long-term GBM cultures, established from different patients, may display two categories/types of growth behavior in an orthotopic xenograft model: expansion of the tumor mass and formation of tumor branches/nodules (nodular like, NL-type) or highly diffuse single tumor cell infiltration (HD-type). METHODS: We determined by DNA microarrays the gene expression profiles of three NL-type and three HD-type long-term GBM cultures. Subsequently, individual genes with different expression levels between the two groups were identified using Significance Analysis of Microarrays (SAM). Real time RT-PCR, immunofluorescence and immunoblot analyses, were performed for a selected subgroup of regulated gene products to confirm the results obtained by the expression analysis. RESULTS: Here, we report the identification of a set of 34 differentially expressed genes in the two types of GBM cultures. Twenty-three of these genes encode for proteins localized to the plasma membrane and 9 of these for proteins are involved in the process of cell adhesion. CONCLUSIONS: This study suggests the participation in the diffuse infiltrative/invasive process of GBM cells within the CNS of a novel set of genes coding for membrane-associated proteins, which should be thus susceptible to an inhibition strategy by specific targeting.Massimiliano Monticone and Antonio Daga contributed equally to this work.


Assuntos
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Glioblastoma/genética , Glioblastoma/patologia , Idoso , Animais , Neoplasias Encefálicas/metabolismo , Aberrações Cromossômicas , Análise por Conglomerados , Feminino , Perfilação da Expressão Gênica , Glioblastoma/metabolismo , Humanos , Immunoblotting , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Pessoa de Meia-Idade , Invasividade Neoplásica , Transplante de Neoplasias , Análise de Sequência com Séries de Oligonucleotídeos , Análise de Componente Principal , Reprodutibilidade dos Testes , Transplante Heterólogo , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa