Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
J Physiol ; 600(23): 5145-5162, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36214387

RESUMO

Sleep-disordered breathing (SDB) affects over 50% of obese individuals. Exaggerated hypoxic chemoreflex is a cardinal trait of SDB in obesity. We have shown that leptin acts in the carotid bodies (CB) to augment chemoreflex and that leptin activates the transient receptor potential melastatin 7 (TRPM7) channel. However, the effect of leptin-TRPM7 signalling in CB on breathing and SDB has not been characterized in diet-induced obesity (DIO). We hypothesized that leptin acts via TRPM7 in the CB to increase chemoreflex leading to SDB in obesity. DIO mice were implanted with EEG/EMG electrodes and transfected with Leprb short hairpin RNA (shRNA) or Trpm7 shRNA vs. control shRNA in the CB area bilaterally. Mice underwent a full-polysomnography and metabolic studies at baseline and after transfection. Ventilatory responses to hypoxia and hypercapnia were assessed during wakefulness. Leprb and Trpm7 were upregulated and their promoters were demethylated in the CB of DIO mice. Leprb knockdown in the CB did not significantly affect ventilation. Trpm7 knockdown in the CB stimulated breathing during sleep in normoxia. These effects were not driven by changes in CB chemosensitivity or metabolism. Under sustained hypoxia, Trpm7 shRNA in the CB augmented ventilation during sleep, but decreased oxyhaemoglobin saturation. We conclude that the suppression of TRPM7 in the CB improved sleep-related hypoventilation and that the respiratory effects of CB TRPM7 channels in obesity are independent of leptin. TRPM7 signalling in the CB could be a therapeutic target for the treatment of obesity-related SDB. KEY POINTS: The leptin-TRPM7 axis in the carotid bodies may play an important role in the pathogenesis of sleep-disordered breathing. TRPM7 channels regulate breathing during sleep by acting peripherally in the carotid bodies. Suppression of TRPM7 signalling in the carotid bodies improves the obesity-induced hypoventilation in mice. Pharmacological blockade of TRPM7 channels in the carotid bodies could be a therapy for sleep-disordered breathing in obesity.


Assuntos
Corpo Carotídeo , Síndromes da Apneia do Sono , Canais de Cátion TRPM , Canais de Potencial de Receptor Transitório , Camundongos , Animais , Corpo Carotídeo/fisiologia , Leptina/metabolismo , Hipoventilação/metabolismo , Canais de Cátion TRPM/genética , Canais de Cátion TRPM/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo , RNA Interferente Pequeno , Sono/fisiologia , Obesidade/complicações , Obesidade/metabolismo , Camundongos Obesos , Síndromes da Apneia do Sono/metabolismo , Hipóxia/complicações , Hipóxia/metabolismo
2.
Am J Respir Crit Care Med ; 203(1): 102-110, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32673075

RESUMO

Rationale: Obstructive sleep apnea is recurrent upper airway obstruction caused by a loss of upper airway muscle tone during sleep. The main goal of our study was to determine if designer receptors exclusively activated by designer drugs (DREADD) could be used to activate the genioglossus muscle as a potential novel treatment strategy for sleep apnea. We have previously shown that the prototypical DREADD ligand clozapine-N-oxide increased pharyngeal diameter in mice expressing DREADD in the hypoglossal nucleus. However, the need for direct brainstem viral injections and clozapine-N-oxide toxicity diminished translational potential of this approach, and breathing during sleep was not examined.Objectives: Here, we took advantage of our model of sleep-disordered breathing in diet-induced obese mice, retrograde properties of the adeno-associated virus serotype 9 (AAV9) viral vector, and the novel DREADD ligand J60.Methods: We administered AAV9-hSyn-hM3(Gq)-mCherry or control AAV9 into the genioglossus muscle of diet-induced obese mice and examined the effect of J60 on genioglossus activity, pharyngeal patency, and breathing during sleep.Measurements and Main Results: Compared with control, J60 increased genioglossus tonic activity by greater than sixfold and tongue uptake of 2-deoxy-2-[18F]fluoro-d-glucose by 1.5-fold. J60 increased pharyngeal patency and relieved upper airway obstruction during non-REM sleep.Conclusions: We conclude that following intralingual administration of AAV9-DREADD, J60 can activate the genioglossus muscle and improve pharyngeal patency and breathing during sleep.


Assuntos
Drogas Desenhadas/uso terapêutico , Nervo Hipoglosso/efeitos dos fármacos , Músculos Faríngeos/efeitos dos fármacos , Receptores de Droga/efeitos dos fármacos , Respiração/efeitos dos fármacos , Apneia Obstrutiva do Sono/tratamento farmacológico , Apneia Obstrutiva do Sono/fisiopatologia , Animais , Modelos Animais de Doenças , Humanos , Masculino , Camundongos
3.
Int J Mol Sci ; 22(13)2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34201760

RESUMO

Obstructive sleep apnea (OSA) is recurrent obstruction of the upper airway due to the loss of upper airway muscle tone during sleep. OSA is highly prevalent, especially in obesity. There is no pharmacotherapy for OSA. Previous studies have demonstrated the role of leptin, an adipose-tissue-produced hormone, as a potent respiratory stimulant. Leptin signaling via a long functional isoform of leptin receptor, LEPRb, in the nucleus of the solitary tract (NTS), has been implicated in control of breathing. We hypothesized that leptin acts on LEPRb positive neurons in the NTS to increase ventilation and maintain upper airway patency during sleep in obese mice. We expressed designer receptors exclusively activated by designer drugs (DREADD) selectively in the LEPRb positive neurons of the NTS of Leprb-Cre-GFP mice with diet-induced obesity (DIO) and examined the effect of DREADD ligand, J60, on tongue muscle activity and breathing during sleep. J60 was a potent activator of LEPRb positive NTS neurons, but did not stimulate breathing or upper airway muscles during NREM and REM sleep. We conclude that, in DIO mice, the stimulating effects of leptin on breathing during sleep are independent of LEPRb signaling in the NTS.


Assuntos
Neurônios/metabolismo , Receptores de Droga/metabolismo , Receptores para Leptina/metabolismo , Síndromes da Apneia do Sono/fisiopatologia , Núcleo Solitário/citologia , Animais , Eletromiografia , Leptina/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Obesidade/etiologia , Obesidade/fisiopatologia , Sono REM , Núcleo Solitário/metabolismo
4.
Am J Respir Cell Mol Biol ; 63(4): 502-509, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32603263

RESUMO

Respiratory depression is the main cause of morbidity and mortality associated with opioids. Obesity increases opioid-related mortality, which is mostly related to comorbid obstructive sleep apnea. Naloxone, a µ-opioid receptor blocker, is an effective antidote, but it reverses analgesia. Like humans with obesity, mice with diet-induced obesity hypoventilate during sleep and develop obstructive sleep apnea, which can be treated with intranasal leptin. We hypothesized that intranasal leptin reverses opioid-induced sleep-disordered breathing in obese mice without decreasing analgesia. To test this hypothesis, mice with diet-induced obesity were treated with morphine at 10 mg/kg subcutaneously and with leptin or placebo intranasally. Sleep and breathing were recorded by barometric plethysmography, and pain sensitivity was measured by the tail-flick test. Excitatory postsynaptic currents were recorded in vitro from hypoglossal motor neurons after the application of the µ-opioid receptor agonist [D-Ala2, N-MePhe4, Gly-ol]-enkephalin and leptin. Morphine dramatically increased the frequency of apneas and greatly increased the severity of hypoventilation and obstructive sleep apnea. Leptin decreased the frequency of apneas, improved obstructive sleep apnea, and completely reversed hypoventilation, whereas morphine analgesia was enhanced. Our in vitro studies demonstrated that [D-Ala2, N-MePhe4, Gly-ol]-enkephalin reduced the frequency of excitatory postsynaptic currents in hypoglossal motoneurons and that application of leptin restored excitatory synaptic neurotransmission. Our findings suggest that intranasal leptin may prevent opioid respiratory depression during sleep in patients with obesity receiving opioids without reducing analgesia.


Assuntos
Analgésicos Opioides/efeitos adversos , Leptina/administração & dosagem , Respiração/efeitos dos fármacos , Síndromes da Apneia do Sono/induzido quimicamente , Síndromes da Apneia do Sono/prevenção & controle , Sono/efeitos dos fármacos , Administração Intranasal/métodos , Analgesia/métodos , Animais , Modelos Animais de Doenças , Encefalinas/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Morfina/farmacologia , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/metabolismo , Receptores Opioides mu/metabolismo , Síndromes da Apneia do Sono/metabolismo , Transmissão Sináptica/efeitos dos fármacos
5.
Am J Respir Crit Care Med ; 199(6): 773-783, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30309268

RESUMO

RATIONALE: Leptin treats upper airway obstruction and alveolar hypoventilation in leptin-deficient ob/ob mice. However, obese humans and mice with diet-induced obesity (DIO) are resistant to leptin because of poor permeability of the blood-brain barrier. We propose that intranasal leptin will bypass leptin resistance and treat sleep-disordered breathing in obesity. OBJECTIVES: To assess if intranasal leptin can treat obesity hypoventilation and upper airway obstruction during sleep in mice with DIO. METHODS: Male C57BL/6J mice were fed with a high-fat diet for 16 weeks. A single dose of leptin (0.4 mg/kg) or BSA (vehicle) were administered intranasally or intraperitoneally, followed by either sleep studies (n = 10) or energy expenditure measurements (n = 10). A subset of mice was treated with leptin daily for 14 days for metabolic outcomes (n = 20). In a separate experiment, retrograde viral tracers were used to examine connections between leptin receptors and respiratory motoneurons. MEASUREMENTS AND MAIN RESULTS: Acute intranasal, but not intraperitoneal, leptin decreased the number of oxygen desaturation events in REM sleep, and increased ventilation in non-REM and REM sleep, independently of metabolic effects. Chronic intranasal leptin decreased food intake and body weight, whereas intraperitoneal leptin had no effect. Intranasal leptin induced signal transducer and activator of transcription 3 phosphorylation in hypothalamic and medullary centers, whereas intraperitoneal leptin had no effect. Leptin receptor-positive cells were synaptically connected to respiratory motoneurons. CONCLUSIONS: In mice with DIO, intranasal leptin bypassed leptin resistance and significantly attenuated sleep-disordered breathing independently of body weight.


Assuntos
Leptina/metabolismo , Absorção Nasal/fisiologia , Obesidade/complicações , Síndromes da Apneia do Sono/complicações , Síndromes da Apneia do Sono/fisiopatologia , Sono/fisiologia , Animais , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais
6.
J Physiol ; 597(1): 151-172, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30285278

RESUMO

KEY POINTS: Leptin is a potent respiratory stimulant. A long functional isoform of leptin receptor, LepRb , was detected in the carotid body (CB), a key peripheral hypoxia sensor. However, the effect of leptin on minute ventilation (VE ) and the hypoxic ventilatory response (HVR) has not been sufficiently studied. We report that LepRb is present in approximately 74% of the CB glomus cells. Leptin increased carotid sinus nerve activity at baseline and in response to hypoxia in vivo. Subcutaneous infusion of leptin increased VE and HVR in C57BL/6J mice and this effect was abolished by CB denervation. Expression of LepRb in the carotid bodies of LepRb deficient obese db/db mice increased VE during wakefulness and sleep and augmented the HVR. We conclude that leptin acts on LepRb in the CBs to stimulate breathing and HVR, which may protect against sleep disordered breathing in obesity. ABSTRACT: Leptin is a potent respiratory stimulant. The carotid bodies (CB) express the long functional isoform of leptin receptor, LepRb , but the role of leptin in CB has not been fully elucidated. The objectives of the current study were (1) to examine the effect of subcutaneous leptin infusion on minute ventilation (VE ) and the hypoxic ventilatory response to 10% O2 (HVR) in C57BL/6J mice before and after CB denervation; (2) to express LepRb in CB of LepRb -deficient obese db/db mice and examine its effects on breathing during sleep and wakefulness and on HVR. We found that leptin enhanced carotid sinus nerve activity at baseline and in response to 10% O2 in vivo. In C57BL/6J mice, leptin increased VE from 1.1 to 1.5 mL/min/g during normoxia (P < 0.01) and from 3.6 to 4.7 mL/min/g during hypoxia (P < 0.001), augmenting HVR from 0.23 to 0.31 mL/min/g/Δ FIO2 (P < 0.001). The effects of leptin on VE and HVR were abolished by CB denervation. In db/db mice, LepRb expression in CB increased VE from 1.1 to 1.3 mL/min/g during normoxia (P < 0.05) and from 2.8 to 3.2 mL/min/g during hypoxia (P < 0.02), increasing HVR. Compared to control db/db mice, LepRb transfected mice showed significantly higher VE throughout non-rapid eye movement (20.1 vs. -27.7 mL/min respectively, P < 0.05) and rapid eye movement sleep (16.5 vs 23.4 mL/min, P < 0.05). We conclude that leptin acts in CB to augment VE and HVR, which may protect against sleep disordered breathing in obesity.


Assuntos
Corpo Carotídeo/fisiologia , Hipóxia/fisiopatologia , Leptina/fisiologia , Ventilação Pulmonar/fisiologia , Sono/fisiologia , Vigília/fisiologia , Animais , Leptina/sangue , Masculino , Camundongos Endogâmicos C57BL , Camundongos Obesos , Receptores para Leptina/fisiologia
9.
Anesth Analg ; 123(6): 1611-1617, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27782940

RESUMO

BACKGROUND: Obesity causes multiorgan dysfunction, specifically metabolic abnormalities in the liver. Obese patients are opioid-sensitive and have high rates of respiratory complications after surgery. Obesity also has been shown to cause resistance to leptin, an adipose-derived hormone that is key in regulating hunger, metabolism, and respiratory stimulation. We hypothesized that obesity and leptin deficiency impair opioid pharmacokinetics (PK) independently of one another. METHODS: Morphine PK were characterized in C57BL/6J wild-type (WT), diet-induced obese (DIO), and leptin-deficient (ob/ob) mice, and in ob/ob mice given leptin-replacement (LR) therapy. WT mice received several dosing regimens of morphine. Obese mice (30 g) received one 80 mg/kg bolus of morphine. Blood was collected at fixed times after morphine injection for quantification of plasma morphine and morphine 3-glucuronide (M3G) levels. PK parameters used to evaluate morphine metabolism included area-under the curve (AUC150), maximal morphine concentration (CMAX), and M3G-to-morphine ratio, and drug elimination was determined by clearance (Cl/F), volume of distribution, and half-life (T1/2). PK parameters were compared between mouse groups by the use of 1-way analysis of variance, with P values less than .05 considered significant. RESULTS: DIO compared with WT mice had significantly decreased morphine metabolism with lower M3G-to-morphine ratio (mean difference [MD]: -4.9; 95% confidence interval [CI]: -8.8 to -0.9) as well as a decreased Cl/F (MD: -4.0; 95% CI: -8.9 to -0.03) Ob/ob compared with WT mice had a large increase in morphine exposure with a greater AUC150 (MD: 980.4; 95% CI: 630.1-1330.6), CMAX (MD: 6.8; 95% CI: 2.7-10.9), and longer T1/2 (MD: 23.1; 95% CI: 10.5-35.6), as well as a decreased Cl/F (MD: -7.0; 95% CI: -11.6 to -2.7). Several PK parameters were significantly greater in ob/ob compared with DIO mice, including AUC150 (MD: 636.4; 95% CI: 207.4-1065.4), CMAX (MD: 5.3; 95% CI: 3.2-10.3), and T1/2 (MD: 18.3; 95% CI: 2.8-33.7). When leptin was replaced in ob/ob mice, PK parameters began to approach DIO and WT levels. LR compared with ob/ob mice had significant decreases in AUC150 (MD: -779.9; 95% CI: -1229.8 to -330), CMAX (MD: -6.1; 95% CI: -11.4 to -0.9), and T1/2 (MD: -19; 95% CI: -35.1 to -2.8). Metabolism increased with LR, with LR mice having a greater M3G-to-morphine ratio compared with DIO (MD: 5.3; 95% CI: 0.3-10.4). CONCLUSIONS: Systemic effects associated with obesity decrease morphine metabolism and excretion. A previous study from our laboratory demonstrated that obesity and leptin deficiency decrease the sensitivity of central respiratory control centers to carbon dioxide. Obesity and leptin deficiency substantially decreased morphine metabolism and clearance, and replacing leptin attenuated the PK changes associated with leptin deficiency, suggesting leptin has a direct role in morphine metabolism.


Assuntos
Analgésicos Opioides/farmacocinética , Leptina/deficiência , Morfina/farmacocinética , Obesidade/metabolismo , Analgésicos Opioides/administração & dosagem , Analgésicos Opioides/sangue , Análise de Variância , Animais , Área Sob a Curva , Dieta Hiperlipídica , Modelos Animais de Doenças , Predisposição Genética para Doença , Meia-Vida , Leptina/genética , Masculino , Taxa de Depuração Metabólica , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Obesos , Modelos Biológicos , Morfina/administração & dosagem , Morfina/sangue , Derivados da Morfina , Obesidade/sangue , Obesidade/genética , Fenótipo
10.
Sleep ; 46(8)2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37262435

RESUMO

Obesity and male sex are main risk factors for sleep-disordered breathing (SDB). We have shown that male diet-induced obesity (DIO) mice develop hypoventilation, sleep apnea, and sleep fragmentation. The effects of DIO on breathing and sleep architecture in females have not been investigated. We hypothesized that female mice are less susceptible to the detrimental effects of DIO on sleep and SDB compared to males. Female DIO-C57BL/6J and lean C57BL/6J mice underwent 24-hour metabolic studies and were exposed to 8% CO2 to measure the hypercapnic ventilatory response (HCVR), and sleep studies. Ventilatory response to arousals was calculated as ratio of the average and peak minute ventilation (VE) during each arousal relative to the baseline VE. Breathing stability was measured with Poincaré plots of VE. Female obesity was associated with decreased metabolism, indicated by reduced oxygen consumption (VO2) and CO2 production (VCO2). VE in 8% CO2 and HCVR were significantly attenuated during wakefulness. NREM sleep duration was reduced in DIO mice, but REM sleep was preserved. Ventilation during NREM and REM sleep was augmented compared to lean mice. Arousal frequency was similar between groups. Obesity increased the frequency of spontaneous arousals, whereas the apnea index was 4-fold reduced in DIO compared to lean mice. Obesity decreased pre- and post-apnea arousals. Obese mice had more stable breathing with reduced ventilatory response to arousals, compared to lean females. We conclude that obese female mice are protected against SDB, which appears to be related to an attenuated CO2 responsiveness, compared to the lean state.


Assuntos
Dióxido de Carbono , Síndromes da Apneia do Sono , Feminino , Masculino , Animais , Camundongos , Camundongos Endogâmicos C57BL , Dieta , Obesidade/complicações , Sono , Síndromes da Apneia do Sono/complicações , Hipercapnia
11.
Cell Rep ; 42(12): 113512, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-38039129

RESUMO

Mismatch between CO2 production (Vco2) and respiration underlies the pathogenesis of obesity hypoventilation. Leptin-mediated CNS pathways stimulate both metabolism and breathing, but interactions between these functions remain elusive. We hypothesized that LEPRb+ neurons of the dorsomedial hypothalamus (DMH) regulate metabolism and breathing in obesity. In diet-induced obese LeprbCre mice, chemogenetic activation of LEPRb+ DMH neurons increases minute ventilation (Ve) during sleep, the hypercapnic ventilatory response, Vco2, and Ve/Vco2, indicating that breathing is stimulated out of proportion to metabolism. The effects of chemogenetic activation are abolished by a serotonin blocker. Optogenetic stimulation of the LEPRb+ DMH neurons evokes excitatory postsynaptic currents in downstream serotonergic neurons of the dorsal raphe (DR). Administration of retrograde AAV harboring Cre-dependent caspase to the DR deletes LEPRb+ DMH neurons and abolishes metabolic and respiratory responses to leptin. These findings indicate that LEPRb+ DMH neurons match breathing to metabolism through serotonergic pathways to prevent obesity-induced hypoventilation.


Assuntos
Hipoventilação , Leptina , Camundongos , Animais , Leptina/metabolismo , Hipoventilação/metabolismo , Obesidade/metabolismo , Respiração , Hipotálamo/metabolismo , Receptores para Leptina/metabolismo
12.
Front Physiol ; 14: 1320151, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38162827

RESUMO

Introduction: Opioid-induced respiratory depression (OIRD) is the primary cause of death associated with opioids and individuals with obesity are particularly susceptible due to comorbid obstructive sleep apnea (OSA). Repeated exposure to opioids, as in the case of pain management, results in diminished therapeutic effect and/or the need for higher doses to maintain the same effect. With limited means to address the negative impact of repeated exposure it is critical to develop drugs that prevent deaths induced by opioids without reducing beneficial analgesia. Methods: We hypothesized that OIRD as a result of chronic opioid use can be attenuated by administration of IN leptin while also maintaining analgesia in both lean mice and mice with diet-induced obesity (DIO) of both sexes. To test this hypothesis, an opioid tolerance protocol was developed and a model of OIRD in mice chronically receiving morphine and tolerant to morphine analgesia was established. Subsequently, breathing was recorded by barometric plethysmography in four experimental groups: obese male, obese female, lean male, and lean female following acute administration of IN leptin. Respiratory data were complemented with measures of arterial blood gas. Operant behavioral assays were used to determine the impact of IN leptin on the analgesic efficacy of morphine. Results: Acute administration of IN leptin significantly attenuated OIRD in DIO male mice decreasing the apnea index by 58.9% and apnea time by 60.1%. In lean mice leptin was ineffective. Blood gas measures confirmed the effectiveness of IN leptin for preventing respiratory acidosis in DIO male mice. However, IN leptin was not effective in lean mice of both sexes and appeared to exacerbate acid-base disturbances in DIO female mice. Additionally, morphine caused a complete loss of temperature aversion which was not reduced by intranasal leptin indicating IN leptin does not decrease morphine analgesia. Discussion: IN leptin effectively treated OIRD in morphine-tolerant DIO male mice without impacting analgesia. In contrast, IN leptin had no effect in lean mice of either sex or DIO female mice. The arterial blood gas data were consistent with ventilatory findings showing that IN leptin reversed morphine-induced respiratory acidosis only in DIO male mice but not in other mouse groups. Finally, a hypercapnic sensitivity study revealed that IN leptin rescued minute ventilation under hypercapnic conditions only in DIO male mice, which suggests that differential responses to IN leptin are attributable to different leptin sensitivities depending on sex and the obesity status.

13.
J Appl Physiol (1985) ; 133(6): 1284-1294, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36201322

RESUMO

Obesity is associated with sleep-disordered breathing (SDB) and unrefreshing sleep. Residual daytime sleepiness and sleep impairments often persist after SDB treatment in patients with obesity, which suggests an independent effect of obesity on breathing and sleep. However, examining the relationship between sleep architecture and SDB in patients with obesity is complex and can be confounded by multiple factors. The main goal of this study was to examine the relationship between obesity-related changes in sleep architecture and SDB. Sleep recordings were performed in 15 lean C57BL/6J and 17 diet-induced obesity (DIO) mice of the same genetic background. Arousals from sleep and apneas were manually scored. Respiratory arousals were classified as events associated with ≥30% drops in minute ventilation (VE) from baseline. We applied Poincaré analysis of VE during sleep to estimate breathing variability. Obesity augmented the frequency of arousals by 45% and this increase was independent of apneas. Respiratory arousals comprised only 15% of the arousals in both groups of mice. Breathing variability during non-rapid-eye-movment (NREM) sleep was significantly higher in DIO mice, but it was not associated with arousal frequency. Our results suggest that obesity induces sleep fragmentation independently of SDB severity.NEW & NOTEWORTHY Our diet-induced obesity (DIO) model reproduces sleep features of human obesity, including sleep fragmentation, increased apnea frequency, and larger breathing variability. DIO induces sleep fragmentation independently of apnea severity. Sleep fragmentation in DIO mice is mainly attributed to non-respiratory arousals. Increased breathing variability during sleep did not account for the higher arousal frequency in DIO. Our results provide a rationale to examine sleep in patients with obesity even when they are adequately treated for sleep-disordered breathing.


Assuntos
Síndromes da Apneia do Sono , Privação do Sono , Humanos , Camundongos , Animais , Privação do Sono/complicações , Camundongos Endogâmicos C57BL , Sono , Obesidade/complicações , Dieta , Camundongos Obesos
14.
Physiol Rep ; 10(10): e15245, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35581741

RESUMO

Serotonin is an important mediator modulating behavior, metabolism, sleep, control of breathing, and upper airway function, but the role of aging in serotonin-mediated effects has not been previously defined. Our study aimed to examine the effect of brain serotonin deficiency on breathing during sleep and metabolism in younger and older mice. We measured breathing during sleep, hypercapnic ventilatory response (HCVR), CO2 production (VCO2 ), and O2 consumption (VO2 ) in 16-18-week old and 40-44-week old mice with deficiency of tryptophan hydroxylase 2 (Tph2), which regulates serotonin synthesis specifically in neurons, compared to Tph2+/+ mice. As expected, aging decreased VCO2 and VO2 . Tph2 knockout resulted in an increase in both metabolic indexes and no interaction between age and the genotype was observed. During wakefulness, neither age nor genotype had an effect on minute ventilation. The genotype did not affect hypercapnic sensitivity in younger mice. During sleep, Tph2-/- mice showed significant decreases in maximal inspiratory flow in NREM sleep, respiratory rate, and oxyhemoglobin saturation in REM sleep, compared to wildtype, regardless of age. Neither serotonin deficiency nor aging affected the frequency of flow limited breaths (a marker of upper airway closure) or apneas. Serotonin deficiency increased the amount and efficiency of sleep only in older animals. In conclusion, younger Tph2-/- mice were able to defend their ventilation and phenotypically did not differ from wildtype during wakefulness. In contrast, both young and old Tph2-/- mice showed sleep-related hypoventilation, which was manifested by hypoxemia during REM sleep.


Assuntos
Respiração , Serotonina , Animais , Encéfalo/metabolismo , Hipercapnia , Camundongos , Serotonina/metabolismo , Sono REM/fisiologia
15.
J Neurophysiol ; 106(5): 2499-505, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21813745

RESUMO

Layer 6 (L6) of primary sensory cortices is distinct from other layers in that it provides a major cortical input to primary sensory thalamic nuclei. L6 pyramidal neurons in the primary visual cortex (V1) send projections to the lateral geniculate nucleus (LGN), as well as to the thalamic reticular nucleus and higher order thalamic nuclei. Although L6 neurons are proposed to modulate the activity of thalamic relay neurons, how sensory experience regulates L6 neurons is largely unknown. Several days of visual deprivation homeostatically adjusts excitatory synapses in L4 and L2/3 of V1 depending on the developmental age. For instance, L4 exhibits an early critical period during which visual deprivation homeostatically scales up excitatory synaptic transmission. On the other hand, homeostatic changes in L2/3 excitatory synapses are delayed and persist into adulthood. In the present study we examined how visual deprivation affects excitatory synapses on L6 pyramidal neurons. We found that L6 pyramidal neurons homeostatically increase the strength of excitatory synapses following 2 days of dark exposure (DE), which was readily reversed by 1 day of light exposure. This effect was restricted to an early critical period, similar to that reported for L4 neurons. However, at a later developmental age, a longer duration of DE (1 wk) decreased the strength of excitatory synapses, which reversed to normal levels with light exposure. These changes are opposite to what is predicted from the homeostatic plasticity theory. Our results suggest that L6 neurons differentially adjust their excitatory synaptic strength to visual deprivation depending on the age of the animals.


Assuntos
Corpos Geniculados , Núcleos Intralaminares do Tálamo , Plasticidade Neuronal/fisiologia , Córtex Visual , Vias Visuais , Animais , Escuridão , Potenciais Pós-Sinápticos Excitadores/fisiologia , Corpos Geniculados/citologia , Corpos Geniculados/crescimento & desenvolvimento , Corpos Geniculados/fisiologia , Homeostase/fisiologia , Núcleos Intralaminares do Tálamo/citologia , Núcleos Intralaminares do Tálamo/crescimento & desenvolvimento , Núcleos Intralaminares do Tálamo/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Cultura de Órgãos , Células Piramidais/fisiologia , Receptores de AMPA/fisiologia , Privação Sensorial/fisiologia , Sinapses/fisiologia , Córtex Visual/citologia , Córtex Visual/crescimento & desenvolvimento , Córtex Visual/fisiologia , Vias Visuais/citologia , Vias Visuais/crescimento & desenvolvimento , Vias Visuais/fisiologia
16.
Front Physiol ; 12: 688375, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34276408

RESUMO

BACKGROUND: Obesity can cause hypertension and exacerbates sleep-disordered breathing (SDB). Leptin is an adipocyte-produced hormone, which increases metabolic rate, suppresses appetite, modulates control of breathing, and increases blood pressure. Obese individuals with high circulating levels of leptin are resistant to metabolic and respiratory effects of leptin, but they appear to be sensitive to hypertensive effects of this hormone. Obesity-induced hypertension has been associated with hyperleptinemia. New Zealand obese (NZO) mice, a model of polygenic obesity, have high levels of circulating leptin and hypertension, and are prone to develop SDB, similarly to human obesity. We hypothesize that systemic leptin receptor blocker Allo-aca will treat hypertension in NZO mice without any effect on body weight, food intake, or breathing. METHODS: Male NZO mice, 12-13 weeks of age, were treated with Allo-aca (n = 6) or a control peptide Gly11 (n = 12) for 8 consecutive days. Doses of 0.2 mg/kg were administered subcutaneously 2×/day, at 10 AM and 6 PM. Blood pressure was measured by telemetry for 48 h before and during peptide infusion. Ventilation was assessed by whole-body barometric plethysmography, control of breathing was examined by assessing the hypoxic ventilatory response (HVR), and polysomnography was performed during light-phase at baseline and during treatment. Heart rate variability analyses were performed to estimate the cardiac autonomic balance. RESULTS: Systemic leptin receptor blockade with Allo-aca did not affect body weight, body temperature, and food intake in NZO mice. Plasma levels of leptin did not change after the treatment with either Allo-aca or the control peptide Gy11. NZO mice were hypertensive at baseline and leptin receptor blocker Allo-aca significantly reduced the mean arterial pressure from 134.9 ± 3.1 to 124.9 ± 5.7 mmHg during the light phase (P < 0.05), whereas the control peptide had no effect. Leptin receptor blockade did not change the heart rate or cardiac autonomic balance. Allo-aca did not affect minute ventilation under normoxic or hypoxic conditions and HVR. Ventilation, apnea index, and oxygen desaturation during NREM and REM sleep did not change with leptin receptor blockade. CONCLUSION: Systemic leptin receptor blockade attenuates hypertension in NZO mice, but does not exacerbate obesity and SDB. Thus, leptin receptor blockade represents a potential pharmacotherapy for obesity-associated hypertension.

17.
Sleep ; 44(6)2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-33624805

RESUMO

STUDY OBJECTIVES: Obesity leads to obstructive sleep apnea (OSA), which is recurrent upper airway obstruction during sleep, and obesity hypoventilation syndrome (OHS), hypoventilation during sleep resulting in daytime hypercapnia. Impaired leptin signaling in the brain was implicated in both conditions, but mechanisms are unknown. We have previously shown that leptin stimulates breathing and treats OSA and OHS in leptin-deficient ob/ob mice and leptin-resistant diet-induced obese mice and that leptin's respiratory effects may occur in the dorsomedial hypothalamus (DMH). We hypothesized that leptin receptor LepRb-deficient db/db mice have obesity hypoventilation and that restoration of leptin signaling in the DMH will increase ventilation during sleep in these animals. METHODS: We measured arterial blood gas in unanesthetized awake db/db mice. We subsequently infected these animals with Ad-LepRb or control Ad-mCherry virus into the DMH and measured ventilation during sleep as well as CO2 production after intracerebroventricular (ICV) infusions of phosphate-buffered saline or leptin. RESULTS: Awake db/db mice had elevated CO2 levels in the arterial blood. Ad-LepRb infection resulted in LepRb expression in the DMH neurons in a similar fashion to wildtype mice. In LepRb-DMH db/db mice, ICV leptin shortened REM sleep and increased inspiratory flow, tidal volume, and minute ventilation during NREM sleep without any effect on the quality of NREM sleep or CO2 production. Leptin had no effect on upper airway obstruction in these animals. CONCLUSION: Leptin stimulates breathing and treats obesity hypoventilation acting on LepRb-positive neurons in the DMH.


Assuntos
Leptina , Receptores para Leptina , Animais , Hipotálamo/metabolismo , Leptina/metabolismo , Camundongos , Camundongos Obesos , Receptores para Leptina/genética , Receptores para Leptina/metabolismo , Sono
19.
Front Neurol ; 9: 985, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30524362

RESUMO

Introduction: Invasive procedures were previously developed for measuring pharyngeal collapsibility in rodents during expiration, when declining neuromuscular activity makes the airway unstable. We developed a non-invasive approach for streamlining collapsibility measurements by characterizing responses in physiologic markers of dynamic expiratory airflow obstruction to negative nasal pressure challenges. Methods: Anesthetized mice were instrumented to monitor upper airway pressure-flow relationships with head-out plethysmography while nasal pressure was ramped down from ~ +5 to -20 cm H2O over several breaths. Inspiratory and expiratory flow, volume, and timing characteristics were assessed breath-wise. Pcrit was estimated at transitions in expiratory amplitude and timing parameters, and compared to gold standard PCRIT measurements when nasal and tracheal pressures diverged during expiration. Predictions equations were constructed in a development data set (n = 8) and applied prospectively to a validation data set (n = 16) to estimate gold standard PCRIT. Results: The development data demonstrated that abrupt reversals in expiratory duration and tidal volume during nasal pressure ramps predicted gold standard PCRIT measurements. After applying regression equations from the development to a validation dataset, we found that a combination of expiratory amplitude and timing parameters proved to be robust predictors of gold standard PCRIT with minimal bias and narrow confidence intervals. Conclusions: Markers of expiratory airflow obstruction can be used to model upper airway collapsibility, and can provide sensitive measures of changes in airway collapsibility in rodents. This approach streamlines repeated non-invasive PCRIT measurements, and facilitates studies examining the impact of genetic, environmental, and pharmacologic factors on upper airway control.

20.
Front Neurol ; 9: 962, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30487776

RESUMO

Obstructive Sleep Apnea (OSA) is a prevalent condition and a major cause of morbidity and mortality in Western Society. The loss of motor input to the tongue and specifically to the genioglossus muscle during sleep is associated with pharyngeal collapsibility and the development of OSA. We applied a novel chemogenetic method to develop a mouse model of sleep disordered breathing Our goal was to reversibly silence neuromotor input to the genioglossal muscle using an adeno-associated viral vector carrying inhibitory designer receptors exclusively activated by designer drugs AAV5-hM4Di-mCherry (DREADD), which was delivered bilaterally to the hypoglossal nucleus in fifteen C57BL/6J mice. In the in vivo experiment, 4 weeks after the viral administration mice were injected with a DREADD ligand clozapine-N-oxide (CNO, i.p., 1mg/kg) or saline followed by a sleep study; a week later treatments were alternated and a second sleep study was performed. Inspiratory flow limitation was recognized by the presence of a plateau in mid-respiratory flow; oxyhemoglobin desaturations were defined as desaturations >4% from baseline. In the in vitro electrophysiology experiment, four males and three females of 5 days of age were used. Sixteen-nineteen days after DREADD injection brain slices of medulla were prepared and individual hypoglossal motoneurons were recorded before and after CNO application. Positive mCherry staining was detected in the hypoglossal nucleus in all mice confirming successful targeting. In sleep studies, CNO markedly increased the frequency of flow limitation n NREM sleep (from 1.9 ± 1.3% after vehicle injection to 14.2 ± 3.4% after CNO, p < 0.05) and REM sleep (from 22.3% ± 4.1% to 30.9 ± 4.6%, respectively, p < 0.05) compared to saline treatment, but there was no significant oxyhemoglobin desaturation or sleep fragmentation. Electrophysiology recording in brain slices showed that CNO inhibited firing frequency of DREADD-containing hypoglossal motoneurons. We conclude that chemogenetic approach allows to silence hypoglossal motoneurons in mice, which leads to sleep disordered breathing manifested by inspiratory flow limitation during NREM and REM sleep without oxyhemoglobin desaturation or sleep fragmentation. Other co-morbid factors, such as compromised upper airway anatomy, may be needed to achieve recurrent pharyngeal obstruction observed in OSA.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa