RESUMO
Alcohol-related liver disease (ALD) accounts for the majority of cirrhosis and liver-related deaths worldwide. Activation of IFN-regulatory factor (IRF3) initiates alcohol-induced hepatocyte apoptosis, which fuels a robust secondary inflammatory response that drives ALD. The dominant molecular mechanism by which alcohol activates IRF3 and the pathways that amplify inflammatory signals in ALD remains unknown. Here we show that cytoplasmic sensor cyclic guanosine monophosphate-adenosine monophosphate (AMP) synthase (cGAS) drives IRF3 activation in both alcohol-injured hepatocytes and the neighboring parenchyma via a gap junction intercellular communication pathway. Hepatic RNA-seq analysis of patients with a wide spectrum of ALD revealed that expression of the cGAS-IRF3 pathway correlated positively with disease severity. Alcohol-fed mice demonstrated increased hepatic expression of the cGAS-IRF3 pathway. Mice genetically deficient in cGAS and IRF3 were protected against ALD. Ablation of cGAS in hepatocytes only phenocopied this hepatoprotection, highlighting the critical role of hepatocytes in fueling the cGAS-IRF3 response to alcohol. We identified connexin 32 (Cx32), the predominant hepatic gap junction, as a critical regulator of spreading cGAS-driven IRF3 activation through the liver parenchyma. Disruption of Cx32 in ALD impaired IRF3-stimulated gene expression, resulting in decreased hepatic injury despite an increase in hepatic steatosis. Taken together, these results identify cGAS and Cx32 as key factors in ALD pathogenesis and as potential therapeutic targets for hepatoprotection.
Assuntos
Junções Comunicantes/metabolismo , Fator Regulador 3 de Interferon/metabolismo , Hepatopatias Alcoólicas/metabolismo , Nucleotidiltransferases/metabolismo , Adulto , Animais , Apoptose , Feminino , Hepatócitos/metabolismo , Humanos , Fígado/citologia , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Nucleotidiltransferases/genética , Transdução de SinaisRESUMO
Identifying the minority of patients with alcohol use disorder (AUD) who develop the wide spectrum of alcohol-associated liver disease (ALD), and risk-stratifying these patients, is of critical importance. High-Mobility Group Box 1 protein (HMGB1) is an alarmin that has been implicated in the pathogenesis of multiple liver diseases. Its use as a biomarker for liver disease in those with AUD has not been studied. In this report, we investigated the association between serum HMGB1 and the presence, severity, and progression of ALD in two well-characterized cohorts of patients with AUD. In our discovery cohort of 80 patients, we found that patients with AUD and ALD exhibited higher serum HMGB1 levels compared to patients with AUD only (p = 0.0002). Additionally, serum HMGB1 levels were positively associated with liver disease severity (p < 0.0001). We found that index serum HMGB1 levels were associated with liver disease progression, defined by an increase in MELD score at 120 days (p = 0.0397). Serum HMGB1 was notable for its diagnostic and prognostic ability; it proved able to distinguish accurately between severe and non-severe forms of ALD in both our discovery cohort (AUC = 0.8199, p = 0.0003) and an independent validation cohort of 74 patients with AUD (AUC = 0.8818, p < 0.0001). Moreover, serum HMGB1 levels effectively predicted both liver-related readmission (AUC = 0.8849, p < 0.0001) and transplantation/death (AUC = 0.8614, p = 0.0002) at 90 days. The predictive potential of HMGB1 was also validated in an independent cohort of patients with AUD. Taken together, our results suggest that serum HMGB1 shows promise as a biologically relevant biomarker for ALD in patients with AUD.