Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Biometeorol ; 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39136712

RESUMO

Soybean (Glycine max) is the world's most cultivated legume; currently, most of its varieties are Bt. Spodoptera spp. (Lepidoptera: Noctuidae) are important pests of soybean. An artificial neural network (ANN) is an artificial intelligence tool that can be used in the study of spatiotemporal dynamics of pest populations. Thus, this work aims to determine ANN to identify population regulation factors of Spodoptera spp. and predict its density in Bt soybean. For two years, the density of Spodoptera spp. caterpillars, predators, and parasitoids, climate data, and plant age was evaluated in commercial soybean fields. The selected ANN was the one with the weather data from 25 days before the pest's density evaluation. ANN forecasting and pest densities in soybean fields presented a correlation of 0.863. It was found that higher densities of the pest occurred in dry seasons, with less wind, higher atmospheric pressure and with increasing plant age. Pest density increased with the increase in temperature until this curve reached its maximum value. ANN forecasting and pest densities in soybean fields in different years, seasons, and stages of plant development were similar. Therefore, this ANN is promising to be implemented into integrated pest management programs in soybean fields.

2.
Int J Biometeorol ; 65(7): 1137-1149, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33844091

RESUMO

Chrysodeixis includens is a polyphagous pest restricted to the American continent. The occurrence of C. includens is allied, among other factors, by favorable conditions such as temperature, humidity, presence of hosts, and migratory behavior. In this work, we built spatiotemporal species distribution models at continental and global levels for the distribution of C. includens using CLIMEX to determine times and regions favorable for year-round survival and migration of this species and in case of invasion on other continents to apply timely and right phytosanitary measures. Our models estimated high climate suitability for C. includens in Central and large proportions of South America throughout the year. Moreover, there is suitability for C. includens growth in all months of the year in Central and northern part of South America. In the northern hemisphere, these conditions range from April to October, while in mid-southern parts of South America, favorable periods comprise October through June. The countries with the highest suitability for C. includens outside the American continent are located on the African and Asian continents. Our results show variable climate suitability for C. includens during the year that help to understand likely migration pattern in North America. This information would direct efforts for appropriate C. includens management during warm and moist periods of the year. Furthermore, our models notify the need for the development of strategies for the inspection and interception of C. includens especially in central Africa, India, South and Southeast Asia, and Northeast Australia.


Assuntos
Mariposas , Animais , Austrália , Índia , América do Norte , Medição de Risco , América do Sul
3.
Int J Biometeorol ; 65(2): 247-256, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33011875

RESUMO

Ascia monuste orseis Godart (Lepidoptera: Pieridae) is a neotropical butterfly distributed in South America. During the larval stage, this insect causes economic losses on Brassica crops. Wet and warm conditions are known to increase subspecies occurrence, but it remains unclear why these conditions are more suitable. In this study, we have shown that both conditions are highly favourable for A. monuste orseis. We determined the thermal requirements for immature development and then created models for A. monuste orseis occurrence using Climex algorithm. Two models were built: one for the year-round presence and other for seasonal suitability. We validated the models using subspecies occurrence records and monitoring in two Brazilian regions (Northeast and Southeast). The minimum, optimum and maximum temperature for immature development were estimated at 16.37, 29.16 and 34.95 °C, respectively. The model for year-round presence indicated tropical areas as highly suitable for A. monuste orseis occurrence (with 88% of accuracy) and the seasonal models showed unsuitable areas in some parts of South America during cold and dry periods. Such predictions were observed in the monitored areas where A. monuste orseis was not found. These results can be associated with the mortality caused by low temperature to immature stages and drought conditions that may induce adult migration to moist habitats. Thus, we suggest that A. monuste orseis occurs mainly during wet and warm seasons on Brassica crops due to deleterious effects caused by cold and dry conditions. This information can be used to improve A. monuste orseis management in Brassica crops.


Assuntos
Brassica , Borboletas , Animais , Brasil , Produtos Agrícolas , Larva
4.
Exp Appl Acarol ; 80(3): 445-461, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32072353

RESUMO

Rice is one of the most important socioeconomic crops in the world. The tarsonemid mite Steneotarsonemus spinki is one of the most destructive pests for this crop and is restricted to some regions of Asia and America. The aim of this work was to map the risk of S. spinki invasion in rice-growing areas in the world. Presence data of Oryza sativa and S. spinki obtained from the literature and bioclimatic parameters from WorldClim were analyzed in the MaxEnt program to generate suitability indices and distribution maps for each species and for the two species together. High annual mean temperature associated with low temperature annual range were the most important environmental variables for the occurrence of O. sativa and S. spinki, and low rainfall favoring S. spinki. The model indicates that there are climatic conditions for the establishment of S. spinki in important rice-producing regions, such as western and central Africa, Oceania, Asia, and North, Central, and South America. Our results are useful for the efficient establishment of phytosanitary measures to prevent the dispersal of S. spinki to new rice-producing areas.


Assuntos
Distribuição Animal , Ácaros/patogenicidade , Oryza/parasitologia , Animais , Clima , Produtos Agrícolas/parasitologia
5.
Int J Biometeorol ; 63(3): 281-291, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30680622

RESUMO

The whitefly, Bemisia tabaci, is considered one of the most important pests for tomato Solanum lycopersicum. The population density of this pest varies throughout the year in response to seasonal variation. Studies of seasonality are important to understand the ecological dynamics and insect population in crops and help to identify which seasons have the best climatic conditions for the growth and development of this insect species. In this research, we used CLIMEX to estimate the seasonal abundance of a species in relation to climate over time and species geographical distribution. Therefore, this research is designed to infer the mechanisms affecting population processes, rather than simply provide an empirical description of field observations based on matching patterns of meteorological data. In this research, we identified monthly suitability for Bemisia tabaci, with the climate models, for 12 commercial tomato crop locations through CLIMEX (version 4.0). We observed that B. tabaci displays seasonality with increased abundance in tomato crops during March, April, May, June, October and November (first year) and during March, April, May, September and October (second year) in all monitored areas. During this period, our model demonstrated a strong agreement between B. tabaci density and CLIMEX weekly growth index (GIw), which indicates significant reliability of our model results. Our results may be useful to design sampling and control strategies, in periods and locations when there is high suitability for B. tabaci.


Assuntos
Hemípteros/fisiologia , Modelos Teóricos , Solanum lycopersicum/parasitologia , Tempo (Meteorologia) , Animais , Clima , Densidade Demográfica , Estações do Ano , Estresse Fisiológico
6.
Ecotoxicol Environ Saf ; 145: 436-441, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28778042

RESUMO

The drywood termite Cryptotermes brevis (Walker, 1853) (Kalotermitidae) is one of the most important wood structural pest in the world. Substances from the secondary metabolism of plants (e.g., essential oils) have been considered an environmentally safer form of control for urban pests, such as termites. In the present study, we analyzed the lethal and sub-lethal effects of essential oil of Lippia sidoides and its major components on C. brevis pseudergates in two routes of exposure (contact and fumigation). The essential oil of L. sidoides and thymol were more toxic to C. brevis pseudergates when applied by contact (LD50 = 9.33 and 8.20µgmg-1, respectively) and by fumigation (LC50 = 9.10 and 23.6µLL-1, respectively). In general, treatments changed the individual and collective behaviors of C. brevis pseudergates, as well as the displacement and walking speed. The essential oil of L. sidoides and its major components showed a high potential to control C. brevis pseudergates, due to the bioactivity in the two routes of exposure and the sub-lethal effects on the behavior and walking, important activities for the cohesion of C. brevis colonies.


Assuntos
Baratas/efeitos dos fármacos , Isópteros/efeitos dos fármacos , Lippia/química , Óleos Voláteis/farmacologia , Óleos de Plantas/farmacologia , Madeira/efeitos dos fármacos , Animais , Dose Letal Mediana , Óleos Voláteis/isolamento & purificação , Óleos de Plantas/isolamento & purificação , Testes de Toxicidade Aguda
7.
Int J Biometeorol ; 61(5): 785-795, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27738767

RESUMO

Seasonal variations are important components in understanding the ecology of insect population of crops. Ecological studies through modeling may be a useful tool for enhancing knowledge of seasonal patterns of insects on field crops as well as seasonal patterns of favorable climatic conditions for species. Recently CLIMEX, a semi-mechanistic niche model, was upgraded and enhanced to consider spatio-temporal dynamics of climate suitability through time. In this study, attempts were made to determine monthly variations of climate suitability for Neoleucinodes elegantalis (Guenée) (Lepidoptera: Crambidae) in five commercial tomato crop localities through the latest version of CLIMEX. We observed that N. elegantalis displays seasonality with increased abundance in tomato crops during summer and autumn, corresponding to the first 6 months of the year in monitored areas in this study. Our model demonstrated a strong accord between the CLIMEX weekly growth index (GIw) and the density of N. elegantalis for this period, thus indicating a greater confidence in our model results. Our model shows a seasonal variability of climatic suitability for N. elegantalis and provides useful information for initiating methods for timely management, such as sampling strategies and control, during periods of high degree of suitability for N. elegantalis. In this study, we ensure that the simulation results are valid through our verification using field data.


Assuntos
Clima , Lepidópteros , Modelos Teóricos , Animais , América Central , Solanum lycopersicum , Densidade Demográfica , Estações do Ano , América do Sul , Estresse Fisiológico , Tempo (Meteorologia)
8.
J Insect Sci ; 15: 172, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25700537

RESUMO

Arthropods are an important group of macroorganisms that work to maintain ecosystem health. Despite the agricultural benefits of chemical control against arthropod pests, insecticides can cause environmental damage. We examined the effects of one and two applications of the insecticides chlorfenapyr (0.18 liters a.i. ha-1) and methamidophos (0.45 liters a.i. ha-1), both independently and in combination, on arthropods in plots of common bean. The experiment was repeated for two growing seasons. Principal response curve, richness estimator, and Shannon-Wiener diversity index analyses were performed. The insecticides generally affected the frequency, richness, diversity, and relative abundance of the arthropods. In addition, the arthropods did not experience recovery after the insecticide applications. The results suggest that the insecticide impacts were sufficiently drastic to eliminate many taxa from the studied common bean plots.


Assuntos
Artrópodes/efeitos dos fármacos , Inseticidas/toxicidade , Compostos Organotiofosforados/toxicidade , Piretrinas/toxicidade , Agricultura/métodos , Animais , Biodiversidade , Brasil , Ecossistema , Fabaceae/parasitologia
9.
Neotrop Entomol ; 53(4): 955-963, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38963530

RESUMO

Globally, people use sugarcane (Saccharum officinarum) to produce sugar and ethanol. Rainfed or irrigated sugarcane agricultural systems are available. Among the pests affecting this crop, the weevil Sphenophorus levis, Vaurie 1978 (Coleoptera: Curculionidae), is increasingly becoming a significant threat in southern South America. Sphenophorus levis populations are controlled using chemical or biological measures. Control decisions hinge upon the economic injury level (EIL). The EIL delineates the pest density that results in financial losses for producers. This study aims to determine the EIL for S. levis, considering the factors favoring this insect pest and chemical and biological control methods in rainfed and irrigated systems. The intensity of S. levis attacks was monitored in commercial sugarcane plantations over four years in João Pinheiro, Minas Gerais, Brazil. Sampling occurred in a 50 × 50 × 30-cm-deep trench dug in the soil surrounding the sugarcane clump. The total number of stumps in the clump, including those attacked by S. levis, was tallied. The EILs for this pest were 5.93% and 4.85% of targeted stumps for chemical control in rainfed and irrigated crops, respectively. Biological control in sugarcane plots resulted in an EIL of 4.15% and 3.40% for stumps attacked in rainfed and irrigated crops, respectively. Pest attacks were more severe during rainy years and in older sugarcane crops. The EIL values determined in this study could inform integrated pest management programs for sugarcane crops.


Assuntos
Irrigação Agrícola , Produtos Agrícolas , Saccharum , Gorgulhos , Animais , Brasil , Controle Biológico de Vetores , Controle de Insetos
10.
Plants (Basel) ; 13(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38999619

RESUMO

Corn (Zea mays) is the most widely planted crop in the world. Dalbulus maidis (Hemiptera: Cicadellidae) is currently a primary corn pest. The starting point for the development of pest control decision-making systems is the determination of a conventional sampling plan. Therefore, this study aimed to determine a practical conventional sampling plan for D. maidis in corn crops. Insect density was evaluated in 28 commercial fields. Subsequently, D. maidis densities were sampled from fields ranging from 1 to 100 ha. Insect density conformed to a negative binomial distribution in 89.29% of the fields. The insect densities determined using the sampling plan had a low error rate (up to 15%). Sampling time and costs ranged from 2.06 to 39.45 min/ha and 0.09 to 1.81 USD/ha for fields of 1-100 ha, respectively. These results provide the first precise and representative conventional sampling plan for scouting D. maidis adults grown in corn fields. Therefore, the conventional sampling plan for D. maidis determined in this study is practical and can be incorporated into integrated pest management programs for corn crops owing to its representativeness, precision, speed, and low cost.

11.
Plants (Basel) ; 13(5)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38475432

RESUMO

Leucoptera coffeella (Lepidoptera: Lyonetiidae) is one of the main pests in coffee crops. The economic injury level (EIL) is the lowest density of the pest at which economic damages match the costs of control measures. The economic threshold (ET) is the density of the pest at which control measures must be taken so that this population does not reach the EIL. These are the main indices used for pest control decision-making. Control of L. coffeella is carried out by manual, tractor, airplane or drone applications. This work aimed to determine EILs and ETs for L. coffeella as a function of insecticide application technology in conventional and organic Coffea arabica crops. Data were collected over five years in commercial C. arabica crops on seven 100 ha central pivots. The cost of control in organic crops was 16.98% higher than conventional. The decreasing order of control cost was manual > drone > airplane > tractor application. Coffee plants were tolerant to low densities (up to 15% mined leaves) of the pest that caused losses of up to 6.56%. At high pest densities (54.20% mined leaves), losses were high (85.62%). In organic and conventional crops and with the use of different insecticide application technologies, EIL and ET were similar. The EIL and ET were 14% and 11% of mined leaves, respectively. Therefore, these indices can be incorporated in integrated pest management programs in C. arabica crops. The indices determined as a function of insecticide application technology in organic and conventional coffee are important as they serve producers with different technological levels. Additionally, EILs and ETs can contribute to more sustainable production, as control methods will only be employed when the pest density reaches these indices.

12.
Plants (Basel) ; 13(4)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38498543

RESUMO

The citrus blackfly (CBF), Aleurocanthus woglumi Ashby, is an exotic pest native to Southeast Asia that has spread rapidly to the world's main centers of citrus production, having been recently introduced to Brazil. In this study, a maximum entropy niche model (MaxEnt) was used to predict the potential worldwide distribution of CBF under current and future climate change scenarios for 2030 and 2050. These future scenarios came from the Coupled Model Intercomparison Project Phase 6 (CMIP6), SSP1-2.6, and SSP5-8.5. The MaxEnt model predicted the potential distribution of CBF with area under receiver operator curve (AUC) values of 0.953 and 0.930 in the initial and final models, respectively. The average temperature of the coldest quarter months, precipitation of the rainiest month, isothermality, and precipitation of the driest month were the strongest predictors of CBF distribution, with contributions of 36.7%, 14.7%, 13.2%, and 10.2%, respectively. The model based on the current time conditions predicted that suitable areas for the potential occurrence of CBF, including countries such as Brazil, China, the European Union, the USA, Egypt, Turkey, and Morocco, are located in tropical and subtropical regions. Models from SSP1-2.6 (2030 and 2050) and SSP5-8.5 (2030) predicted that suitable habitats for CBF are increasing dramatically worldwide under future climate change scenarios, particularly in areas located in the southern US, southern Europe, North Africa, South China, and part of Australia. On the other hand, the SSP5-8.5 model of 2050 indicated a great retraction of the areas suitable for CBF located in the tropical region, with an emphasis on countries such as Brazil, Colombia, Venezuela, and India. In general, the CMIP6 models predicted greater risks of invasion and dissemination of CBF until 2030 and 2050 in the southern regions of the USA, European Union, and China, which are some of the world's largest orange producers. Knowledge of the current situation and future propagation paths of the pest serve as tools to improve the strategic government policies employed in CBF's regulation, commercialization, inspection, combat, and phytosanitary management.

13.
Neotrop Entomol ; 52(4): 760-771, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37058226

RESUMO

The mango weevil, Sternochetus mangiferae (Fabricius) (Curculionidae), pest present in Brazil and is restricted to some municipalities in the Rio de Janeiro State. This curculionid attacks the mango crop exclusively and puts mango production globally at risk, especially those destined for export. Using ecological modeling tools, this study is the first to map the potential risk of S. mangiferae in Brazil. We aimed to identify the potential distribution of this pest in Brazilian states, drawing up thematic maps of regions that present suitable and unsuitable climatic conditions for the establishment of the pest using the MaxEnt ecological niche model. The average annual temperature, the annual precipitation, the average daytime temperature range, and the annual temperature range were the variables that contributed most to the selected model. The MaxEnt model predicted highly suitable areas for S. mangiferae throughout the Brazilian coast, especially on the northeast coast. The region responsible for more than 50% of mango production in Brazil, the São Francisco Valley, was classified by the model with suitability for the pest; it can impacts exportations due to the imposition of phytosanitary barriers. This information can be used in strategies to prevent the introduction and establishment of this pest in new areas and monitor programs in areas with recent occurrence. In addition, the model results can be used in future research plans on S. mangiferae in worldwide modeling studies and climate change scenarios.

14.
J Econ Entomol ; 116(2): 599-604, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-36715643

RESUMO

Sampling plans are an essential part of integrated pest management programs. Sequential sampling plans enable rapid and low-cost assessment of pest densities. Thrips are emerging pests in soybean crops, and the main method used in pest control is chemical. In soybean crops, insecticides are applied mainly using tractors or airplanes. Thus, this work aimed to determine sequential sampling plans for thrips in soybean crops with insecticide applications using a tractor or airplane. Data were collected in 56 soybean fields, and each field was 20 ha. Sampling plans were determined and validated. The lower (m0) and upper (m1) limits of the sequential sampling plans were: m0 = 1.72 and m1 = 3.43 (by tractor applications) and, m0 = 2.27 and m1 = 4.53 thrips. sample-1 (by airplane applications). The slope (S) and the lower (h0) and upper (h1) intercepts of the sequential sampling plans were: S = 2.42, h0 = -5.79, and h1 = 5.79 (by tractor applications) and, S = 3.19, h0 = -6.83, and h1 = 6.83 (by airplane applications). Sequential sampling plans allowed for correct decisions to be made in all situations using a maximum of 10 samples. The sequential plan reduced the sampling effort by over 87% compared to conventional sampling plans. Therefore, these control decision-making systems have proven feasible and advantageous for implementing integrated pest management programs for controlling thrips species in soybean crops.


Assuntos
Inseticidas , Tisanópteros , Animais , Glycine max , Controle de Pragas/métodos , Produtos Agrícolas
15.
Pest Manag Sci ; 79(7): 2325-2337, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36799295

RESUMO

BACKGROUND: Corn is one of the main crops grown globally to produce food for human consumption and animal feed, including raw materials for bioenergy. Effective pest management is critical for the economic viability of corn production. The leafhopper Dalbulus maidis and the diseases transmitted by it have become relevant to corn production. Our study aimed to determine environmental parameters that affect D. maidis populations and the impacts of pathogen dispersion on corn productivity under different rotation systems and sowing seasons. RESULTS: The population density of leafhoppers found in the studied crops was low but capable of establishing the diseases and spreading them widely in the crops. The leafhopper's highest occurrence was in the corn vegetative development stage, and its population peaks were earlier in the corn off-season. The incidence of maize rayado fino virus and maize bushy stunt phytoplasma were higher in corn off-season than in the growing season. The incidence of diseases was higher in the final stages of the cultivation cycle. Yield losses were significantly higher for maize bushy stunt phytoplasma and not significant for maize rayado fino virus. CONCLUSION: Our study observed that corn's physiological stage was the main factor influencing D. maidis dynamics. The occurrence of D. maidis at low densities was sufficient to ensure the efficient transmission and dissemination of maize rayado fino virus and maize bushy stunt phytoplasma, which had a higher incidence in the reproductive stage and the corn sowed off-season. © 2023 Society of Chemical Industry.


Assuntos
Hemípteros , Phytoplasma , Animais , Humanos , Zea mays , Phytoplasma/fisiologia , Hemípteros/fisiologia , Incidência
16.
Pest Manag Sci ; 78(6): 2534-2549, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35332664

RESUMO

BACKGROUND: The Asian citrus psyllid (ACP) Diaphorina citri Kuwayama (Hemiptera: Liviidae) is a destructive, invasive species that poses a serious threat to the citrus industry wherever it occurs. The psyllid vectors the phloem-limited bacteria 'Candidatus Liberibacter americanus' and 'Ca. L. asiaticus', causal agents of the incurable citrus greening disease or huanglongbing (HLB). It is essential to understand which regions and areas are suitable for colonization by ACP to formulate appropriate policy and preventive measures. Considering its biology and ecology, we used a machine learning algorithm based on the MaxEnt (Maximum Entropy) principle, to predict the potential global distribution of ACP using bioclimatic variables and elevation. RESULTS: The model predictions are consistent with the known distribution of ACP and also highlight the potential occurrence outside its current ecological range, that is, primarily in Africa, Asia and the Americas. The most important abiotic variables driving the global distribution of ACP were annual mean temperature, seasonality of temperature and annual precipitation. CONCLUSION: Our findings highlight the need for international collaboration in slowing the spread of invasive pests like D. citri. © 2022 Society of Chemical Industry.


Assuntos
Citrus , Hemípteros , Rhizobiaceae , Animais , Citrus/microbiologia , Hemípteros/microbiologia , Espécies Introduzidas , Doenças das Plantas/microbiologia
17.
Pest Manag Sci ; 78(10): 4397-4406, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35762333

RESUMO

BACKGROUND: The application of synthetic insecticides is the main strategy used to reduce the damage caused by the diamondback moth Plutella xylostella in commercial Brassica crops. However, incorrect insecticide use can cause biological and ecological disturbances in agroecosystems. Cycloneda sanguinea is a generalist voracious predator and is distributed widely in cultivated and noncultivated ecosystems. This study investigated the efficiency of four insecticides for the control of P. xylostella and the lethal and sublethal effects of these insecticides on C. sanguinea. RESULTS: Spinosad (92% mortality) and chlorfenapyr (76% mortality) were highly toxic to P. xylostela. However, chlorantraniliprole (10% mortality) and methomyl (no mortality) were ineffective against this pest. Chlorantraniliprole was the only insecticide that was highly toxic to C. sanguinea by contact (90% mortality), however, it was nontoxic following the ingestion of chlorantraniliprole-contaminated aphids. Interestingly, ingestion of prey contaminated with methomyl and chlorfenapyr was highly toxic (100% mortality) to C. sanguinea. Spinosad was nontoxic to C. sanguinea via exposure to contaminated surfaces and following ingestion of contaminated prey. However, direct contact of the insects with both methomyl and spinosad significantly affected C. sanguinea flight activity (vertical flight and free-fall flight), whereas chlorfenapyr impacted vertical flight only. CONCLUSION: These findings showed that chlorantraniliprole was not only ineffective for the control of P. xylostela, but was also highly toxic to C. sanguinea. The results indicated that spinosad was efficient against P. xylostela and was of low toxicity to C. sanguinea; however, the deleterious effects of this insecticide on flight behavior could result in reduced predatory efficiency. © 2022 Society of Chemical Industry.


Assuntos
Besouros , Inseticidas , Mariposas , Animais , Ecossistema , Resistência a Inseticidas , Inseticidas/toxicidade , Larva , Metomil/toxicidade
18.
Sci Rep ; 12(1): 20312, 2022 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-36434029

RESUMO

The impact of invasive alien pests on agriculture, food security, and biodiversity conservation has been worsened by climate change caused by the rising earth's atmospheric greenhouse gases. The African citrus triozid, Trioza erytreae (Del Guercio; Hemiptera: Triozidae), is an invasive pest of all citrus species. It vectors the phloem-limited bacterium "Candidatus Liberibacter africanus", a causal agent of citrus greening disease or African Huanglongbing (HLB). Understanding the global distribution of T. erytreae is critical for surveillance, monitoring, and eradication programs. Therefore, we combined geospatial and physiological data of T. erytreae to predict its global distribution using the CLIMEX model. The model's prediction matches T. erytreae present-day distribution and shows that parts of the Mediterranean region have moderate (0 < EI < 30) to high (EI > 30) suitability for the pest. The model predicts habitat suitability in the major citrus-producing countries, such as Mexico, Brazil, China, India, and the USA. In the Special Report on Emissions Scenarios (SRES) A1B and A2 scenarios, the model predicts a reduction in habitat suitability from the current time to 2070. The findings show that global citrus production will continue to be threatened by T. erytreae. However, our study provides relevant information for biosecurity and risk assessment.


Assuntos
Citrus , Hemípteros , Animais , Hemípteros/fisiologia , Doenças das Plantas/microbiologia , Citrus/microbiologia , Liberibacter , Brasil
19.
Environ Sci Pollut Res Int ; 29(30): 45763-45773, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35152351

RESUMO

The global search for eco-friendly and human-safe pesticides has intensified, and research on essential oils (EOs) has expanded due to their remarkable insecticidal activities and apparent human-safe. Despite this, most of the literature focuses on short-term and simplified efforts to understand lethal effects, with only a few comprehensive studies addressing sublethal exposures. To fill this shortcoming, we explore the lethal and sublethal effects of Pogostemon cablin (Lamiaceae) EO and an EO-based emulsion (18%) using the coffee berry borer Hypothenemus hampei Ferrari (Coleoptera: Curculionidae: Scolytinae) as a model. First, we determine the toxicity of EO and EO-based emulsion using dose-mortality curves and lethal times. Second, we subjected adult females of H. hampei to sublethal doses to assess whether they affected their behavior, reproductive output, and histological features. Our findings reveal that patchoulol (43.05%), α-Guaiene (16.06%), and α-Bulnesene (13.69%) were the main components of the EO. Furthermore, the EO and its emulsion had similar toxicity, with dose-mortality curves and lethal times overlapping 95% confidence intervals. We also observed that sublethal exposure of females of H. hampei reduces reproduction and feeding, increases walking activity, and causes histopathological changes in the midgut. This study advances the knowledge of the lethal and sublethal effects of an eco-friendly substance on insects.Responsible Editor: Giovanni Benelli.


Assuntos
Coffea , Besouros , Lamiaceae , Óleos Voláteis , Pogostemon , Rhamnus , Gorgulhos , Animais , Emulsões , Feminino , Humanos
20.
Neotrop Entomol ; 50(2): 298-302, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33683558

RESUMO

The diamondback moth (DBM), Plutella xylostella (L.) (Lep.: Plutellidae), is an important pest of broccoli (Brassica oleracea L. var. italica Plenck). Few studies have focused on the real DBM impact on broccoli yield. We performed greenhouse studies to assess the effect of DBM densities and infestation timing (at pre-heading, heading, or during the entire cycle) on broccoli head weight. Polynomial trend analysis revealed a downward linear response of head weight to DBM densities, indicating that broccoli is susceptible to DBM attack. As for the infestation timing, infestations during the pre-heading stage significantly impacted head weight, whereas the same did not occur for infestations during the heading stage. DBM density did not affect plant height or total leaves but was upward-related to plant defoliation, and head weight correlated negatively with plant defoliation. These findings indicate that pre-heading is the determining stage for head weight loss of plants under DBM attack. In order to prevent quantitative losses, efforts for DBM management should be focused on this particular stage.


Assuntos
Brassica , Herbivoria , Mariposas , Animais , Brassica/crescimento & desenvolvimento , Larva , Folhas de Planta
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa