Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 16500, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37779153

RESUMO

We have carried out studies to examine the possibility of using biosorbents: the epigeic mosses Pleurozium schreberi (Willd. ex Brid.) Mitt., and the epiphytic lichens Hypogymnia physodes (L.) Nyl. in active biomonitoring of heavy metal pollution of surface waters. The dried sea algae Palmaria palmata (L.) Weber & Mohr were used as the third biosorbent. The studies were conducted in the waters of the Turawa Reservoir, a dam reservoir with a significant level of eutrophication in south-western Poland. Incremental concentrations of Mn, Ni, Zn, Cu, Cd, and Pb were determined in the exposed samples. It was shown that a 2-h exposure period increases the concentration of some metals in the exposed samples, even by as much as several hundred percent. High increments of nickel concentrations in the algae Palmaria palmata (mean: 0.0040 mg/g, with the initial concentration of c0 < 0.0016 in the algae) were noted, with negligible increments in concentrations of this metal in mosses and lichens. In contrast, mosses and lichens accumulated relatively high amounts of Cd (mean: 0.0033 mg/g, c0 = 0.00043 mg/g) and Pb (mean: 0.0243 mg/g, c0 = 0.0103 mg/g), respectively.


Assuntos
Briófitas , Líquens , Metais Pesados , Monitoramento Biológico , Cádmio , Troca Iônica , Chumbo , Monitoramento Ambiental , Metais Pesados/análise
2.
Materials (Basel) ; 15(7)2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35407740

RESUMO

Municipal landfills generate a significant amount of high-energy biogas, which can be used as a renewable gaseous fuel. However, it is necessary to improve the quality of this biogas due to the presence of various chemical compounds. The most common pollutants in landfill biogas include volatile compounds of silicon, sulphur, phosphorus and chlorine. The aforementioned elements, as well as other metals, were found both in the deposits and in the engine oil. The paper presents detailed characteristics of the solid residues formed in selected parts of gas engines powered by landfill biogas. Its elemental composition and morphology were investigated in order to determine the structure and influence of these deposits. In order to better understand the observed features, selected analyses were also conducted for biogas, engine oil and the condensate generated during biogas dewatering. It was found that the content of individual elements in samples collected from the same part of the gas engine but sourced from various landfills vary. The occurrence of elements in deposits, e.g., Mg, Zn, P and Cr, depends on the location of sampling sites and the type of engine. It was also observed that the deposits formed in parts that come into contact with both biogas and engine oil contain Ca or Zn, which can be related to biogas pollutants as well as different oil additives. The presence of Al, Fe, Cu, Cr, Sn or Pb in selected motor oil samples can be explained by the penetration of metallic abrasives, which confirms the abrasive properties of the formed deposits. The analysis of the characteristic deposits may contribute to the selection of an appropriate landfill biogas purification technology, thus reducing the operating costs of energy cogeneration systems. Finally, we highlight challenges for biogas purification processes and anticipate the direction of future work.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa