Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Development ; 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38895900

RESUMO

Tunicates are the sister group to the vertebrates, yet most species have a life cycle split between swimming larva and sedentary adult phases. During metamorphosis, larval neurons are replaced by adult-specific ones. The regulatory mechanisms underlying this replacement remain largely unknown. Using tissue-specific CRISPR/Cas9-mediated mutagenesis in the tunicate Ciona, we show that orthologs of conserved hindbrain and branchiomeric neuron regulatory factors Pax2/5/8 and Phox2 are required to specify the "neck", a cellular compartment set aside in the larva to give rise to cranial motor neuron-like neurons post-metamorphosis. Using bulk and single-cell RNAseq analyses, we characterize the transcriptome of the neck downstream of Pax2/5/8. We present evidence that neck-derived adult ciliomotor neurons begin to differentiate in the larva and persist through metamorphosis, contrary to the assumption that the adult nervous system is formed after settlement and the death of larval neurons during metamorphosis. Finally, we show that FGF signaling during the larval phase alters the patterning of the neck and its derivatives. Suppression of FGF converts neck cells into larval neurons that fail to survive metamorphosis, while prolonged FGF signaling promotes an adult neural stem cell-like fate.

2.
PLoS Biol ; 22(3): e3002555, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38478577

RESUMO

The papillae of tunicate larvae contribute sensory, adhesive, and metamorphosis-regulating functions that are crucial for the biphasic lifestyle of these marine, non-vertebrate chordates. We have identified additional molecular markers for at least 5 distinct cell types in the papillae of the model tunicate Ciona, allowing us to further study the development of these organs. Using tissue-specific CRISPR/Cas9-mediated mutagenesis and other molecular perturbations, we reveal the roles of key transcription factors and signaling pathways that are important for patterning the papilla territory into a highly organized array of different cell types and shapes. We further test the contributions of different transcription factors and cell types to the production of the adhesive glue that allows for larval attachment during settlement, and to the processes of tail retraction and body rotation during metamorphosis. With this study, we continue working towards connecting gene regulation to cellular functions that control the developmental transition between the motile larva and sessile adult of Ciona.


Assuntos
Urocordados , Animais , Urocordados/genética , Urocordados/metabolismo , Adesivos/metabolismo , Larva , Biomarcadores/metabolismo , Fatores de Transcrição/metabolismo , Metamorfose Biológica
3.
Artigo em Inglês | MEDLINE | ID: mdl-37675754

RESUMO

The Motor Ganglion (MG) is a small collection of neurons that control the swimming movements of the tunicate tadpole larva. Situated at the base of the tail, molecular and functional comparisons suggest that may be a homolog of the spinal cord and/or hindbrain ("rhombospinal" region) of vertebrates. Here we review the most current knowledge of the development, connectivity, functions, and unique identities of the neurons that comprise the MG, drawn mostly from studies in Ciona spp. The simple cell lineages, minimal cellular composition, and comprehensively mapped "connectome" of the Ciona MG all make this an excellent model for studying the development and physiology of motor control in aquatic larvae.

4.
Proc Natl Acad Sci U S A ; 114(37): 9906-9911, 2017 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-28847955

RESUMO

Sister chromatids are tethered together by the cohesin complex from the time they are made until their separation at anaphase. The ability of cohesin to tether sister chromatids together depends on acetylation of its Smc3 subunit by members of the Eco1 family of cohesin acetyltransferases. Vertebrates express two orthologs of Eco1, called Esco1 and Esco2, both of which are capable of modifying Smc3, but their relative contributions to sister chromatid cohesion are unknown. We therefore set out to determine the precise contributions of Esco1 and Esco2 to cohesion in vertebrate cells. Here we show that cohesion establishment is critically dependent upon Esco2. Although most Smc3 acetylation is Esco1 dependent, inactivation of the ESCO1 gene has little effect on mitotic cohesion. The unique ability of Esco2 to promote cohesion is mediated by sequences in the N terminus of the protein. We propose that Esco1-dependent modification of Smc3 regulates almost exclusively the noncohesive activities of cohesin, such as DNA repair, transcriptional control, chromosome loop formation, and/or stabilization. Collectively, our data indicate that Esco1 and Esco2 contribute to distinct and separable activities of cohesin in vertebrate cells.


Assuntos
Acetiltransferases/metabolismo , Cromátides/fisiologia , Proteínas Cromossômicas não Histona/metabolismo , Acetilação , Acetiltransferases/fisiologia , Sequência de Bases , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/fisiologia , Divisão Celular/fisiologia , Cromátides/metabolismo , Proteínas Cromossômicas não Histona/fisiologia , Segregação de Cromossomos/fisiologia , Replicação do DNA/fisiologia , Regulação da Expressão Gênica/genética , Humanos , Proteínas Nucleares/metabolismo , Coesinas
5.
bioRxiv ; 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38559144

RESUMO

Vertebrates and tunicates are sister groups that share a common fusogenic factor, Myomaker (Mymk), that drives myoblast fusion and muscle multinucleation. Yet they are divergent in when and where they express Mymk. In vertebrates, all developing skeletal muscles express Mymk and are obligately multinucleated. In tunicates, Mymk is only expressed in post-metamorphic multinucleated muscles, but is absent from mononucleated larval muscles. In this study, we demonstrate that cis-regulatory sequence differences in the promoter region of Mymk underlie the different spatiotemporal patterns of its transcriptional activation in tunicates and vertebrates. While in vertebrates Myogenic Regulatory Factors (MRFs) like MyoD1 alone are required and sufficient for Mymk transcription in all skeletal muscles, we show that transcription of Mymk in post-metamorphic muscles of the tunicate Ciona requires the combinatorial activity of MRF/MyoD and Early B-Cell Factor (Ebf). This macroevolutionary difference appears to be encoded in cis, likely due to the presence of a putative Ebf binding site adjacent to predicted MRF binding sites in the Ciona Mymk promoter. We further discuss how Mymk and myoblast fusion might have been regulated in the last common ancestor of tunicates and vertebrates, for which we propose two models.

6.
Geroscience ; 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38512579

RESUMO

Despite the universal impact of sarcopenia on compromised health and quality of life in the elderly, promising pharmaceutical approaches that can effectively mitigate loss of muscle and function during aging have been limited. Our group and others have reported impairments in peripheral motor neurons and loss of muscle innervation as initiating factors in sarcopenia, contributing to mitochondrial dysfunction and elevated oxidative stress in muscle. We recently reported a reduction in α motor neuron loss in aging mice in response to the compound OKN-007, a proposed antioxidant and anti-inflammatory agent. In the current study, we asked whether OKN-007 treatment in wildtype male mice for 8-9 months beginning at 16 months of age can also protect muscle mass and function. At 25 months of age, we observed a reduction in the loss of whole-body lean mass, a reduced loss of innervation at the neuromuscular junction and well-preserved neuromuscular junction morphology in OKN-007 treated mice versus age matched wildtype untreated mice. The loss in muscle force generation in aging mice (~ 25%) is significantly improved with OKN-007 treatment. In contrast, OKN-007 treatment provided no protection in loss of muscle mass in aging mice. Mitochondrial function was improved by OKN-007 treatment, consistent with its potential antioxidative properties. Together, these exciting findings are the first to demonstrate that interventions through neuroprotection can be an effective therapy to counter aging-related muscle dysfunction.

7.
Geroscience ; 46(3): 3219-3233, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38233728

RESUMO

Oxidative stress is associated with tissue dysfunctions that can lead to reduced health. Prior work has shown that oxidative stress contributes to both muscle atrophy and cellular senescence, which is a hallmark of aging that may drive in muscle atrophy and muscle contractile dysfunction. The purpose of the study was to test the hypothesis that cellular senescence contributes to muscle atrophy or weakness. To increase potential senescence in skeletal muscle, we used a model of oxidative stress-induced muscle frailty, the CuZn superoxide dismutase knockout (Sod1KO) mouse. We treated 6-month-old wildtype (WT) and Sod1KO mice with either vehicle or a senolytic treatment of combined dasatinib (5 mg/kg) + quercetin (50 mg/kg) (D + Q) for 3 consecutive days every 15 days. We continued treatment for 7 months and sacrificed the mice at 13 months of age. Treatment with D + Q did not preserve muscle mass, reduce NMJ fragmentation, or alter muscle protein synthesis in Sod1KO mice when compared to the vehicle-treated group. However, we observed an improvement in muscle-specific force generation in Sod1KO mice treated with D + Q when compared to Sod1KO-vehicle mice. Overall, these data suggest that reducing cellular senescence via D + Q is not sufficient to mitigate loss of muscle mass in a mouse model of oxidative stress-induced muscle frailty but may mitigate some aspects of oxidative stress-induced muscle dysfunction.


Assuntos
Fragilidade , Senoterapia , Camundongos , Animais , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo , Camundongos Knockout , Estresse Oxidativo , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Músculo Esquelético/metabolismo , Superóxido Dismutase/metabolismo
8.
bioRxiv ; 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37645866

RESUMO

Tunicates are the sister group to the vertebrates, yet most species have a life cycle split between swimming larva and sedentary adult phases. During metamorphosis, larval neurons are largely replaced by adult-specific ones. Yet the regulatory mechanisms underlying this neural replacement remain largely unknown. Using tissue-specific CRISPR/Cas9-mediated mutagenesis in the tunicate Ciona, we show that orthologs of conserved hindbrain and branchiomeric neuron regulatory factors Pax2/5/8 and Phox2 are required to specify the "Neck", a compartment of cells set aside in the larva to give rise to cranial motor neuron-like neurons in the adult. Using bulk and single-cell RNAseq analyses, we also characterize the transcriptome of the Neck downstream of Pax2/5/8. Surprisingly, we find that Neck-derived adult ciliomotor neurons begin to differentiate in the larva, contrary to the long-held assumption that the adult nervous system is formed only after settlement and the death of larval neurons during metamorphosis. Finally, we show that manipulating FGF signaling during the larval phase alters the patterning of the Neck and its derivatives. Suppression of FGF converts Neck cells into larval neurons that fail to survive metamorphosis, while prolonged FGF signaling promotes an adult neural stem cell-like fate instead.

9.
Redox Biol ; 59: 102550, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36470129

RESUMO

Neuronal oxidative stress has been implicated in aging and neurodegenerative disease. Here we investigated the impact of elevated oxidative stress induced in mouse spinal cord by deletion of Mn-Superoxide dismutase (MnSOD) using a neuron specific Cre recombinase in Sod2 floxed mice (i-mn-Sod2 KO). Sod2 deletion in spinal cord neurons was associated with mitochondrial alterations and peroxide generation. Phenotypically, i-mn-Sod2 KO mice experienced hindlimb paralysis and clasping behavior associated with extensive demyelination and reduced nerve conduction velocity, axonal degeneration, enhanced blood brain barrier permeability, elevated inflammatory cytokines, microglia activation, infiltration of neutrophils and necroptosis in spinal cord. In contrast, spinal cord motor neuron number, innervation of neuromuscular junctions, muscle mass, and contractile function were not altered. Overall, our findings show that loss of MnSOD in spinal cord promotes a phenotype of demyelination, inflammation and progressive paralysis that mimics phenotypes associated with progressive multiple sclerosis.


Assuntos
Esclerose Múltipla , Doenças Neurodegenerativas , Camundongos , Animais , Mitocôndrias , Superóxido Dismutase/genética , Neurônios Motores , Superóxido Dismutase-1/genética , Fenótipo , Paralisia/genética , Inflamação/genética
10.
Geroscience ; 44(1): 67-81, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34984634

RESUMO

Aging is associated with molecular and functional declines in multiple physiologic systems. We have previously reported age-related changes in spinal cord that included a decline in α-motor neuron numbers, axonal loss, and demyelination associated with increased inflammation and blood-spinal cord barrier (BSCB) permeability. These changes may influence other pathologies associated with aging, in particular loss of muscle mass and function (sarcopenia), which we and others have shown is accompanied by neuromuscular junction disruption and loss of innervation. Interventions to protect and maintain motor neuron viability and function in aging are currently lacking and could have a significant impact on improving healthspan. Here we tested a promising compound, OKN-007, that has known antioxidant, anti-inflammatory and neuroprotective properties, as a potential intervention in age-related changes in the spinal cord. OKN-007 is a low molecular weight disulfonyl derivative of (N-tert Butyl-α-phenylnitrone) (PBN) that can easily cross the blood-brain barrier. We treated middle age (16 month) wild-type male mice with OKN-007 in drinking water at a dose of 150 mg/kg/day until 25 months of age. OKN-007 treatment exerted a number of beneficial effects in the aging spinal cord, including a 35% increase in the number of lumbar α-motor neurons in OKN-treated old mice compared to age-matched controls. Brain spinal cord barrier permeability, which is increased in aging spinal cord, was also blunted by OKN-007 treatment. Age-related changes in microglia proliferation and activation are blunted by OKN-007, while we found no effect on astrocyte proliferation. Transcriptome analysis identified expression changes in a number of genes that are involved in neuronal structure and function and revealed a subset of genes whose changes in response to aging are reversed by OKN-007 treatment. Overall, our findings suggest that OKN-007 exerts neuroprotective and anti-inflammatory effects on the aging spinal cord and support OKN-007 as a potential therapeutic to improve α-motor neuron health.


Assuntos
Neurônios Motores , Medula Espinal , Envelhecimento/fisiologia , Animais , Benzenossulfonatos , Iminas , Masculino , Camundongos , Neurônios Motores/metabolismo , Junção Neuromuscular , Medula Espinal/metabolismo
11.
Front Aging Neurosci ; 14: 876816, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35547624

RESUMO

Emerging evidence suggests that patients with Alzheimer's disease (AD) may show accelerated sarcopenia phenotypes. To investigate whether pathological changes associated with neuronal death and cognitive dysfunction also occur in peripheral motor neurons and muscle as a function of age, we used the triple transgenic mouse model of AD (3xTgAD mice) that carries transgenes for mutant forms of APP, Tau, and presenilin proteins that are associated with AD pathology. We measured changes in motor neurons and skeletal muscle function and metabolism in young (2 to 4 month) female control and 3xTgAD mice and in older (18-20 month) control and 3xTgAD female mice. In older 3xTgAD mice, we observed a number of sarcopenia-related phenotypes, including significantly fragmented and denervated neuromuscular junctions (NMJs) associated with a 17% reduction in sciatic nerve induced vs. direct muscle stimulation induced contractile force production, and a 30% decrease in gastrocnemius muscle mass. On the contrary, none of these outcomes were found in young 3xTgAD mice. We also measured an accumulation of amyloid-ß (Aß) in both skeletal muscle and neuronal tissue in old 3xTgAD mice that may potentially contribute to muscle atrophy and NMJ disruption in the older 3xTgAD mice. Furthermore, the TGF-ß mediated atrophy signaling pathway is activated in old 3xTgAD mice and is a potential contributing factor in the muscle atrophy that occurs in this group. Perhaps surprisingly, mitochondrial oxygen consumption and reactive oxygen species (ROS) production are not elevated in skeletal muscle from old 3xTgAD mice. Together, these results provide new insights into the effect of AD pathological mechanisms on peripheral changes in skeletal muscle.

12.
Aging Cell ; 21(3): e13569, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35199907

RESUMO

Age-related muscle atrophy and weakness, or sarcopenia, are significant contributors to compromised health and quality of life in the elderly. While the mechanisms driving this pathology are not fully defined, reactive oxygen species, neuromuscular junction (NMJ) disruption, and loss of innervation are important risk factors. The goal of this study is to determine the impact of mitochondrial hydrogen peroxide on neurogenic atrophy and contractile dysfunction. Mice with muscle-specific overexpression of the mitochondrial H2 O2  scavenger peroxiredoxin3 (mPRDX3) were crossed to Sod1KO mice, an established mouse model of sarcopenia, to determine whether reduced mitochondrial H2 O2 can prevent or delay the redox-dependent sarcopenia. Basal rates of H2 O2  generation were elevated in isolated muscle mitochondria from Sod1KO, but normalized by mPRDX3 overexpression. The mPRDX3 overexpression prevented the declines in maximum mitochondrial oxygen consumption rate and calcium retention capacity in Sod1KO. Muscle atrophy in Sod1KO was mitigated by ~20% by mPRDX3 overexpression, which was associated with an increase in myofiber cross-sectional area. With direct muscle stimulation, maximum isometric specific force was reduced by ~20% in Sod1KO mice, and mPRDX3 overexpression preserved specific force at wild-type levels. The force deficit with nerve stimulation was exacerbated in Sod1KO compared to direct muscle stimulation, suggesting NMJ disruption in Sod1KO. Notably, this defect was not resolved by overexpression of mPRDX3. Our findings demonstrate that muscle-specific PRDX3 overexpression reduces mitochondrial H2 O2  generation, improves mitochondrial function, and mitigates loss of muscle quantity and quality, despite persisting NMJ impairment in a murine model of redox-dependent sarcopenia.


Assuntos
Sarcopenia , Envelhecimento , Animais , Modelos Animais de Doenças , Peróxido de Hidrogênio/metabolismo , Camundongos , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Estresse Oxidativo , Peroxirredoxina III/metabolismo , Qualidade de Vida , Sarcopenia/patologia , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo
13.
Geroscience ; 42(2): 765-784, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32144690

RESUMO

Age-related muscle weakness and loss of muscle mass (sarcopenia) is a universal problem in the elderly. Our previous studies indicate that alpha motor neurons (α-MNs) play a critical role in this process. The goal of the current study is to uncover changes in the aging spinal cord that contribute to loss of innervation and the downstream degenerative processes that occur in skeletal muscle. The number of α-MNs is decreased in the spinal cord of wildtype mice during aging, beginning in middle age and reaching a 41% loss by 27 months of age. There is evidence for age-related loss of myelin and mild inflammation, including astrocyte and microglia activation and an increase in levels of sICAM-1. We identified changes in metabolites consistent with compromised neuronal viability, such as reduced levels of N-acetyl-aspartate. Cleaved caspase-3 is more abundant in spinal cord from old mice, suggesting that apoptosis contributes to neuronal loss. RNA-seq analysis revealed changes in the expression of a number of genes in spinal cord from old mice, in particular genes encoding extracellular matrix components (ECM) and a 172-fold increase in MMP-12 expression. Furthermore, blood-spinal cord barrier (BSCB) permeability is increased in old mice, which may contribute to alterations in spinal cord homeostasis and exacerbate neuronal distress. Together, these data show for the first time that the spinal cord undergoes significant changes during aging, including progressive α-MNs loss that is associated with low-grade inflammation, apoptosis, changes in ECM, myelination, and vascular permeability.


Assuntos
Neurônios Motores , Medula Espinal , Envelhecimento , Animais , Astrócitos , Camundongos , Camundongos Endogâmicos C57BL , Medula Espinal/fisiopatologia
14.
Geroscience ; 42(4): 1101-1118, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32394347

RESUMO

Mice lacking the superoxide anion scavenger CuZn superoxide dismutase (Sod1-/- mice) develop a number of age-related phenotypes, including an early progression of muscle atrophy and weakness (sarcopenia) associated with loss of innervation. The purpose of this study was to delineate the early development of sarcopenia in the Sod1-/- mice and to measure changes in the muscle transcriptome, proteome, and eicosanoid profile at the stage when sarcopenia is markedly induced in this model (7-9 months of age). We found a strong correlation between muscle atrophy and mitochondrial state 1 hydroperoxide production, which was 40% higher in isolated mitochondria from Sod1-/- mouse gastrocnemius muscle by 2 months of age. The primary pathways showing altered gene expression in Sod1-/- mice identified by RNA-seq transcriptomic analysis are protein ubiquitination, synaptic long-term potentiation, calcium signaling, phospholipase C signaling, AMPK, and TWEAK signaling. Targeted proteomics shows elevated expression of mitochondrial proteins, fatty acid metabolism enzymes, tricarboxylic acid (TCA) cycle enzymes, and antioxidants, while enzymes involved in carbohydrate metabolism are downregulated in Sod1-/- mice. LC-MS analysis of lipids in gastrocnemius muscle detected 78 eicosanoids, of which 31 are significantly elevated in muscle from Sod1-/- mice. These data suggest that mitochondrial hydroperoxide generation is elevated prior to muscle atrophy and may be a potential driving factor of changes in the transcriptome, proteome, and eicosanoid profile of the Sod1-/- mice. Together, these analyses revealed important molecular events that occur during muscle atrophy, which will pave the way for future studies using new approaches to treat sarcopenia.


Assuntos
Sarcopenia , Animais , Redes e Vias Metabólicas , Camundongos , Músculo Esquelético/metabolismo , Atrofia Muscular/genética , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Estresse Oxidativo , Sarcopenia/metabolismo
15.
J Cachexia Sarcopenia Muscle ; 11(6): 1688-1704, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32918528

RESUMO

BACKGROUND: Cancer is associated with muscle atrophy (cancer cachexia) that is linked to up to 40% of cancer-related deaths. Oxidative stress is a critical player in the induction and progression of age-related loss of muscle mass and weakness (sarcopenia); however, the role of oxidative stress in cancer cachexia has not been defined. The purpose of this study was to examine if elevated oxidative stress exacerbates cancer cachexia. METHODS: Cu/Zn superoxide dismutase knockout (Sod1KO) mice were used as an established mouse model of elevated oxidative stress. Cancer cachexia was induced by injection of one million Lewis lung carcinoma (LLC) cells or phosphate-buffered saline (saline) into the hind flank of female wild-type mice or Sod1KO mice at approximately 4 months of age. The tumour developed for 3 weeks. Muscle mass, contractile function, neuromuscular junction (NMJ) fragmentation, metabolic proteins, mitochondrial function, and motor neuron function were measured in wild-type and Sod1KO saline and tumour-bearing mice. Data were analysed by two-way ANOVA with Tukey-Kramer post hoc test when significant F ratios were determined and α was set at 0.05. Unless otherwise noted, results in abstract are mean ±SEM. RESULTS: Muscle mass and cross-sectional area were significantly reduced, in tumour-bearing mice. Metabolic enzymes were dysregulated in Sod1KO mice and cancer exacerbated this phenotype. NMJ fragmentation was exacerbated in tumour-bearing Sod1KO mice. Myofibrillar protein degradation increased in tumour-bearing wild-type mice (wild-type saline, 0.00847 ± 0.00205; wildtype LLC, 0.0211 ± 0.00184) and tumour-bearing Sod1KO mice (Sod1KO saline, 0.0180 ± 0.00118; Sod1KO LLC, 0.0490 ± 0.00132). Muscle mitochondrial oxygen consumption was reduced in tumour-bearing mice compared with saline-injected wild-type mice. Mitochondrial protein degradation increased in tumour-bearing wild-type mice (wild-type saline, 0.0204 ± 0.00159; wild-type LLC, 0.167 ± 0.00157) and tumour-bearing Sod1KO mice (Sod1KO saline, 0.0231 ± 0.00108; Sod1 KO LLC, 0.0645 ± 0.000631). Sciatic nerve conduction velocity was decreased in tumour-bearing wild-type mice (wild-type saline, 38.2 ± 0.861; wild-type LLC, 28.8 ± 0.772). Three out of eleven of the tumour-bearing Sod1KO mice did not survive the 3-week period following tumour implantation. CONCLUSIONS: Oxidative stress does not exacerbate cancer-induced muscle loss; however, cancer cachexia may accelerate NMJ disruption.


Assuntos
Caquexia , Carcinoma Pulmonar de Lewis , Animais , Caquexia/etiologia , Carcinoma Pulmonar de Lewis/complicações , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Knockout , Estresse Oxidativo , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo
16.
Aging Cell ; 19(10): e13225, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32886862

RESUMO

Age-associated loss of muscle mass and function (sarcopenia) has a profound effect on the quality of life in the elderly. Our previous studies show that CuZnSOD deletion in mice (Sod1-/- mice) recapitulates sarcopenia phenotypes, including elevated oxidative stress and accelerated muscle atrophy, weakness, and disruption of neuromuscular junctions (NMJs). To determine whether deletion of Sod1 initiated in neurons in adult mice is sufficient to induce muscle atrophy, we treated young (2- to 4-month-old) Sod1flox/SlickHCre mice with tamoxifen to generate i-mn-Sod1KO mice. CuZnSOD protein was 40-50% lower in neuronal tissue in i-mn-Sod1KO mice. Motor neuron number in ventral spinal cord was reduced 28% at 10 months and more than 50% in 18- to 22-month-old i-mn-Sod1KO mice. By 24 months, 22% of NMJs in i-mn-Sod1KO mice displayed a complete lack of innervation and deficits in specific force that are partially reversed by direct muscle stimulation, supporting the loss of NMJ structure and function. Muscle mass was significantly reduced by 16 months of age and further decreased at 24 months of age. Overall, our findings show that neuronal-specific deletion of CuZnSOD is sufficient to cause motor neuron loss in young mice, but that NMJ disruption, muscle atrophy, and weakness are not evident until past middle age. These results suggest that loss of innervation is critical but may not be sufficient until the muscle reaches a threshold beyond which it cannot compensate for neuronal loss or rescue additional fibers past the maximum size of the motor unit.


Assuntos
Cobre/metabolismo , Neurônios Motores/metabolismo , Superóxido Dismutase-1/metabolismo , Zinco/metabolismo , Animais , Camundongos , Neurônios Motores/enzimologia , Fenótipo
17.
J Cachexia Sarcopenia Muscle ; 10(2): 411-428, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30706998

RESUMO

BACKGROUND: Excess reactive oxygen species (ROS) and muscle weakness occur in parallel in multiple pathological conditions. However, the causative role of skeletal muscle mitochondrial ROS (mtROS) on neuromuscular junction (NMJ) morphology and function and muscle weakness has not been directly investigated. METHODS: We generated mice lacking skeletal muscle-specific manganese-superoxide dismutase (mSod2KO) to increase mtROS using a cre-Lox approach driven by human skeletal actin. We determined primary functional parameters of skeletal muscle mitochondrial function (respiration, ROS, and calcium retention capacity) using permeabilized muscle fibres and isolated muscle mitochondria. We assessed contractile properties of isolated skeletal muscle using in situ and in vitro preparations and whole lumbrical muscles to elucidate the mechanisms of contractile dysfunction. RESULTS: The mSod2KO mice, contrary to our prediction, exhibit a 10-15% increase in muscle mass associated with an ~50% increase in central nuclei and ~35% increase in branched fibres (P < 0.05). Despite the increase in muscle mass of gastrocnemius and quadriceps, in situ sciatic nerve-stimulated isometric maximum-specific force (N/cm2 ), force per cross-sectional area, is impaired by ~60% and associated with increased NMJ fragmentation and size by ~40% (P < 0.05). Intrinsic alterations of components of the contractile machinery show elevated markers of oxidative stress, for example, lipid peroxidation is increased by ~100%, oxidized glutathione is elevated by ~50%, and oxidative modifications of myofibrillar proteins are increased by ~30% (P < 0.05). We also find an approximate 20% decrease in the intracellular calcium transient that is associated with specific force deficit. Excess superoxide generation from the mitochondrial complexes causes a deficiency of succinate dehydrogenase and reduced complex-II-mediated respiration and adenosine triphosphate generation rates leading to severe exercise intolerance (~10 min vs. ~2 h in wild type, P < 0.05). CONCLUSIONS: Increased skeletal muscle mtROS is sufficient to elicit NMJ disruption and contractile abnormalities, but not muscle atrophy, suggesting new roles for mitochondrial oxidative stress in maintenance of muscle mass through increased fibre branching.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa