Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Mol Microbiol ; 111(5): 1367-1381, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30767351

RESUMO

Heme is an essential cofactor and alternative iron source for almost all bacterial species but may cause severe toxicity upon elevated levels and consequently, regulatory mechanisms coordinating heme homeostasis represent an important fitness trait. A remarkable scenario is found in several corynebacterial species, e.g. Corynebacterium glutamicum and Corynebacterium diphtheriae, which dedicate two paralogous, heme-responsive two-component systems, HrrSA and ChrSA, to cope with the Janus nature of heme. Here, we combined experimental reporter profiling with a quantitative mathematical model to understand how this particular regulatory network architecture shapes the dynamic response to heme. Our data revealed an instantaneous activation of the detoxification response (hrtBA) upon stimulus perception and we found that kinase activity of both kinases contribute to this fast onset. Furthermore, instant deactivation of the PhrtBA promoter is achieved by a strong ChrS phosphatase activity upon stimulus decline. While the activation of detoxification response is uncoupled from further factors, heme utilization is additionally governed by the global iron regulator DtxR integrating information on iron availability into the regulatory network. Altogether, our data provide comprehensive insights how TCS cross-regulation and network hierarchy shape the temporal dynamics of detoxification (hrtBA) and utilization (hmuO) as part of a global homeostatic response to heme.


Assuntos
Proteínas de Bactérias/metabolismo , Corynebacterium glutamicum/enzimologia , Regulação Bacteriana da Expressão Gênica , Heme/metabolismo , Fosfotransferases/metabolismo , Transdução de Sinais , Proteínas de Bactérias/genética , Corynebacterium glutamicum/genética , Homeostase , Ferro/metabolismo , Modelos Teóricos , Fosforilação , Fosfotransferases/genética , Regiões Promotoras Genéticas
2.
Artigo em Inglês | MEDLINE | ID: mdl-31871088

RESUMO

Resistance against cell wall-active antimicrobial peptides in bacteria is often mediated by transporters. In low-GC-content Gram-positive bacteria, a common type of such transporters is BceAB-like systems, which frequently provide high-level resistance against peptide antibiotics that target intermediates of the lipid II cycle of cell wall synthesis. How a transporter can offer protection from drugs that are active on the cell surface, however, has presented researchers with a conundrum. Multiple theories have been discussed, ranging from removal of the peptides from the membrane and internalization of the drug for degradation to removal of the cellular target rather than the drug itself. To resolve this much-debated question, we here investigated the mode of action of the transporter BceAB of Bacillus subtilis We show that it does not inactivate or import its substrate antibiotic bacitracin. Moreover, we present evidence that the critical factor driving transport activity is not the drug itself but instead the concentration of drug-target complexes in the cell. Our results, together with previously reported findings, lead us to propose that BceAB-type transporters act by transiently freeing lipid II cycle intermediates from the inhibitory grip of antimicrobial peptides and thus provide resistance through target protection of cell wall synthesis. Target protection has so far only been reported for resistance against antibiotics with intracellular targets, such as the ribosome. However, this mechanism offers a plausible explanation for the use of transporters as resistance determinants against cell wall-active antibiotics in Gram-positive bacteria where cell wall synthesis lacks the additional protection of an outer membrane.


Assuntos
Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Parede Celular/efeitos dos fármacos , Bacillus subtilis/efeitos dos fármacos , Proteínas de Bactérias/genética , Farmacorresistência Bacteriana , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos
3.
Mol Microbiol ; 104(1): 1-15, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28152228

RESUMO

Transporters are essential players in bacterial growth and survival, since they are key for uptake of nutrients on the one hand, and for defence against endogenous and environmental stresses on the other hand. Remarkably, in addition to their primary role in substrate translocation, it has become clear that some transporters have acquired a secondary function as sensors and information processors in signalling pathways. In this review, we describe recent advances in our understanding of the role of transporters in such signalling cascades, and discuss some of the emergent dynamic behaviour found in hallmark examples. A particular focus is placed on new insights into mechanistic details of information transfer between transporters and regulatory proteins. Quantitative considerations reveal that these signalling complexes can implement a remarkable diversity of regulatory logic functions, where the transporter can act as activity switch, as positive or negative reporter of transport flux, or as a signalling hub for the integration of multiple inputs. Such a dual use of transport proteins not only enables efficient substrate translocation but is also an elegant strategy to integrate important information about the cell's external conditions with its current physiological state.


Assuntos
Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Membrana Transportadoras/fisiologia , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/metabolismo , Transdução de Sinais/fisiologia
4.
mSystems ; 5(1)2020 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-32019833

RESUMO

Bacterial resistance against antibiotics often involves multiple mechanisms that are interconnected to ensure robust protection. So far, the knowledge about underlying regulatory features of those resistance networks is sparse, since they can hardly be determined by experimentation alone. Here, we present the first computational approach to elucidate the interplay between multiple resistance modules against a single antibiotic and how regulatory network structure allows the cell to respond to and compensate for perturbations of resistance. Based on the response of Bacillus subtilis toward the cell wall synthesis-inhibiting antibiotic bacitracin, we developed a mathematical model that comprehensively describes the protective effect of two well-studied resistance modules (BceAB and BcrC) on the progression of the lipid II cycle. By integrating experimental measurements of expression levels, the model accurately predicts the efficacy of bacitracin against the B. subtilis wild type as well as mutant strains lacking one or both of the resistance modules. Our study reveals that bacitracin-induced changes in the properties of the lipid II cycle itself control the interplay between the two resistance modules. In particular, variations in the concentrations of UPP, the lipid II cycle intermediate that is targeted by bacitracin, connect the effect of the BceAB transporter and the homeostatic response via BcrC to an overall resistance response. We propose that monitoring changes in pathway properties caused by a stressor allows the cell to fine-tune deployment of multiple resistance systems and may serve as a cost-beneficial strategy to control the overall response toward this stressor.IMPORTANCE Antibiotic resistance poses a major threat to global health, and systematic studies to understand the underlying resistance mechanisms are urgently needed. Although significant progress has been made in deciphering the mechanistic basis of individual resistance determinants, many bacterial species rely on the induction of a whole battery of resistance modules, and the complex regulatory networks controlling these modules in response to antibiotic stress are often poorly understood. In this work we combined experiments and theoretical modeling to decipher the resistance network of Bacillus subtilis against bacitracin, which inhibits cell wall biosynthesis in Gram-positive bacteria. We found a high level of cross-regulation between the two major resistance modules in response to bacitracin stress and quantified their effects on bacterial resistance. To rationalize our experimental data, we expanded a previously established computational model for the lipid II cycle through incorporating the quantitative action of the resistance modules. This led us to a systems-level description of the bacitracin stress response network that captures the complex interplay between resistance modules and the essential lipid II cycle of cell wall biosynthesis and accurately predicts the minimal inhibitory bacitracin concentration in all the studied mutants. With this, our study highlights how bacterial resistance emerges from an interlaced network of redundant homeostasis and stress response modules.

5.
Nat Commun ; 10(1): 2733, 2019 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-31227716

RESUMO

Cell wall antibiotics are crucial for combatting the emerging wave of resistant bacteria. Yet, our understanding of antibiotic action is limited, as many strains devoid of all resistance determinants display far higher antibiotic tolerance in vivo than suggested by the antibiotic-target binding affinity in vitro. To resolve this conflict, here we develop a comprehensive theory for the bacterial cell wall biosynthetic pathway and study its perturbation by antibiotics. We find that the closed-loop architecture of the lipid II cycle of wall biosynthesis features a highly asymmetric distribution of pathway intermediates, and show that antibiotic tolerance scales inversely with the abundance of the targeted pathway intermediate. We formalize this principle of minimal target exposure as intrinsic resistance mechanism and predict how cooperative drug-target interactions can mitigate resistance. The theory accurately predicts the in vivo efficacy for various cell wall antibiotics in different Gram-positive bacteria and contributes to a systems-level understanding of antibiotic action.


Assuntos
Vias Biossintéticas/efeitos dos fármacos , Parede Celular/efeitos dos fármacos , Farmacorresistência Bacteriana/efeitos dos fármacos , Bactérias Gram-Positivas/metabolismo , Infecções por Bactérias Gram-Positivas/tratamento farmacológico , Parede Celular/metabolismo , Bactérias Gram-Positivas/efeitos dos fármacos , Infecções por Bactérias Gram-Positivas/microbiologia , Modelos Biológicos , Uridina Difosfato Ácido N-Acetilmurâmico/análogos & derivados , Uridina Difosfato Ácido N-Acetilmurâmico/biossíntese
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa