Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(16): e2218280120, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37036992

RESUMO

Migratory insects are key players in ecosystem functioning and services, but their spatiotemporal distributions are typically poorly known. Ecological niche modeling (ENM) may be used to predict species seasonal distributions, but the resulting hypotheses should eventually be validated by field data. The painted lady butterfly (Vanessa cardui) performs multigenerational migrations between Europe and Africa and has become a model species for insect movement ecology. While the annual migration cycle of this species is well understood for Europe and northernmost Africa, it is still unknown where most individuals spend the winter. Through ENM, we previously predicted suitable breeding grounds in the subhumid regions near the tropics between November and February. In this work, we assess the suitability of these predictions through i) extensive field surveys and ii) two-year monitoring in six countries: a large-scale monitoring scheme to study butterfly migration in Africa. We document new breeding locations, year-round phenological information, and hostplant use. Field observations were nearly always predicted with high probability by the previous ENM, and monitoring demonstrated the influence of the precipitation seasonality regime on migratory phenology. Using the updated dataset, we built a refined ENM for the Palearctic-African range of V. cardui. We confirm the relevance of the Afrotropical region and document the missing natural history pieces of the longest migratory cycle described in butterflies.


Assuntos
Borboletas , Humanos , Animais , Ecossistema , Migração Animal , Europa (Continente) , Insetos , Estações do Ano
2.
Mol Phylogenet Evol ; 194: 108022, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38325534

RESUMO

The world's largest butterfly genus Delias, commonly known as Jezebels, comprises ca. 251 species found throughout Asia, Australia, and Melanesia. Most species are endemic to islands in the Indo-Australian Archipelago or to New Guinea and nearby islands in Melanesia, and many species are restricted to montane habitats over 1200 m. We inferred an extensively sampled and well-supported molecular phylogeny of the group to better understand the spatial and temporal dimensions of its diversification. The remarkable diversity of Delias evolved in just ca. 15-16 Myr (crown age). The most recent common ancestor of a clade with most of the species dispersed out of New Guinea ca. 14 Mya, but at least six subsequently diverging lineages dispersed back to the island. Diversification was associated with frequent dispersal of lineages among the islands of the Indo-Australian Archipelago, and the divergence of sister taxa on a single landmass was rare and occurred only on the largest islands, most notably on New Guinea. We conclude that frequent inter-island dispersal during the Neogene-likely facilitated by frequent sea level change-sparked much diversification during that period. Many extant New Guinea lineages started diversifying 5 Mya, suggesting that orogeny facilitated their diversification. Our results largely agree with the most recently proposed species group classification system, and we use our large taxon sample to extend this system to all described species. Finally, we summarize recent insights to speculate how wing pattern evolution, mimicry, and sexual selection might also contribute to these butterflies' rapid speciation and diversification.


Assuntos
Borboletas , Animais , Filogenia , Borboletas/genética , Nova Guiné , Austrália , Ecossistema
3.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33547236

RESUMO

Color vision has evolved multiple times in both vertebrates and invertebrates and is largely determined by the number and variation in spectral sensitivities of distinct opsin subclasses. However, because of the difficulty of expressing long-wavelength (LW) invertebrate opsins in vitro, our understanding of the molecular basis of functional shifts in opsin spectral sensitivities has been biased toward research primarily in vertebrates. This has restricted our ability to address whether invertebrate Gq protein-coupled opsins function in a novel or convergent way compared to vertebrate Gt opsins. Here we develop a robust heterologous expression system to purify invertebrate rhodopsins, identify specific amino acid changes responsible for adaptive spectral tuning, and pinpoint how molecular variation in invertebrate opsins underlie wavelength sensitivity shifts that enhance visual perception. By combining functional and optophysiological approaches, we disentangle the relative contributions of lateral filtering pigments from red-shifted LW and blue short-wavelength opsins expressed in distinct photoreceptor cells of individual ommatidia. We use in situ hybridization to visualize six ommatidial classes in the compound eye of a lycaenid butterfly with a four-opsin visual system. We show experimentally that certain key tuning residues underlying green spectral shifts in blue opsin paralogs have evolved repeatedly among short-wavelength opsin lineages. Taken together, our results demonstrate the interplay between regulatory and adaptive evolution at multiple Gq opsin loci, as well as how coordinated spectral shifts in LW and blue opsins can act together to enhance insect spectral sensitivity at blue and red wavelengths for visual performance adaptation.


Assuntos
Borboletas/fisiologia , Visão de Cores/fisiologia , Evolução Molecular , Rodopsina/genética , Animais , Duplicação Gênica , Células HEK293 , Humanos , Células Fotorreceptoras de Invertebrados/metabolismo , Pigmentação/fisiologia , Característica Quantitativa Herdável , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Rodopsina/metabolismo , Opsinas de Bastonetes/genética , Asas de Animais/fisiologia
4.
Appl Environ Microbiol ; 89(7): e0081223, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37338413

RESUMO

Carnivorous pitcher plants are uniquely adapted to nitrogen limitation, using pitfall traps to acquire nutrients from insect prey. Pitcher plants in the genus Sarracenia may also use nitrogen fixed by bacteria inhabiting the aquatic microcosms of their pitchers. Here, we investigated whether species of a convergently evolved pitcher plant genus, Nepenthes, might also use bacterial nitrogen fixation as an alternative strategy for nitrogen capture. First, we constructed predicted metagenomes of pitcher organisms from three species of Singaporean Nepenthes using 16S rRNA sequence data and correlated predicted nifH abundances with metadata. Second, we used gene-specific primers to amplify and quantify the presence or absence of nifH directly from 102 environmental samples and identified potential diazotrophs with significant differential abundance in samples that also had positive nifH PCR tests. Third, we analyzed nifH in eight shotgun metagenomes from four additional Bornean Nepenthes species. Finally, we conducted an acetylene reduction assay using greenhouse-grown Nepenthes pitcher fluids to confirm nitrogen fixation is indeed possible within the pitcher habitat. Results show active acetylene reduction can occur in Nepenthes pitcher fluid. Variation in nifH from wild samples correlates with Nepenthes host species identity and pitcher fluid acidity. Nitrogen-fixing bacteria are associated with more neutral fluid pH, while endogenous Nepenthes digestive enzymes are most active at low fluid pH. We hypothesize Nepenthes species experience a trade-off in nitrogen acquisition; when fluids are acidic, nitrogen is primarily acquired via plant enzymatic degradation of insects, but when fluids are neutral, Nepenthes plants take up more nitrogen via bacterial nitrogen fixation. IMPORTANCE Plants use different strategies to obtain the nutrients that they need to grow. Some plants access their nitrogen directly from the soil, while others rely on microbes to access the nitrogen for them. Carnivorous pitcher plants generally trap and digest insect prey, using plant-derived enzymes to break down insect proteins and generate a large portion of the nitrogen that they subsequently absorb. In this study, we present results suggesting that bacteria living in the fluids formed by Nepenthes pitcher plants can fix nitrogen directly from the atmosphere, providing an alternative pathway for plants to access nitrogen. These nitrogen-fixing bacteria are only likely to be present when pitcher plant fluids are not strongly acidic. Interestingly, the plant's enzymes are known to be more active under strongly acidic conditions. We propose a potential trade-off where pitcher plants sometimes access nitrogen using their own enzymes to digest prey and at other times take advantage of bacterial nitrogen fixation.


Assuntos
Bactérias Fixadoras de Nitrogênio , Animais , RNA Ribossômico 16S/genética , Insetos , Bactérias/genética , Nitrogênio/análise , Alcinos
5.
New Phytol ; 240(5): 2050-2057, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37798874

RESUMO

Endophytic feeding behaviors, including stem borings and galling, have been observed in the fossil record from as early as the Devonian and involve the consumption of a variety of plant (and fungal) tissues. Historically, the exploitation of internal stem tissues through galling has been well documented as emerging during the Pennsylvanian (c. 323-299 million years ago (Ma)), replaced during the Permian by galling of foliar tissues. However, leaf mining, a foliar endophytic behavior that today is exhibited exclusively by members of the four hyperdiverse holometabolous insect orders, has been more sparsely documented, with confirmed examples dating back only to the Early Triassic (c. 252-250 Ma). Here, we describe a trace fossil on seed-fern foliage from the Rhode Island Formation of Massachusetts, USA, representing the earliest indication of a general, endophytic type of feeding damage and dating from the Middle Pennsylvanian (c. 312 Ma). Although lacking the full features of Mesozoic leaf mines, this specimen provides evidence of how endophytic mining behavior may have originated. It sheds light on the evolutionary transition to true foliar endophagy, contributes to our understanding of the behaviors of early holometabolous insects, and enhances our knowledge of macroevolutionary patterns of plant-insect interactions.


Assuntos
Evolução Biológica , Plantas , Animais , Fósseis , Insetos , Herbivoria
6.
Mol Ecol ; 32(11): 2695-2714, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-35377501

RESUMO

The Hengduan Mountains region is a biodiversity hotspot known for its topologically complex, deep valleys and high mountains. While landscape and glacial refugia have been evoked to explain patterns of interspecies divergence, the accumulation of intra-species (i.e., population level) genetic divergence across the mountain-valley landscape in this region has received less attention. We used genome-wide restriction site-associated DNA sequencing (RADseq) to reveal signatures of Pleistocene glaciation in populations of Thitarodes shambalaensis (Lepidoptera: Hepialidae), the host moth of parasitic Ophiocordyceps sinensis (Hypocreales: Ophiocordycipitaceae) or "caterpillar fungus" endemic to the glacier of eastern Mt. Gongga. We used moraine history along the glacier valleys to model the distribution and environmental barriers to gene flow across populations of T. shambalaensis. We found that moth populations separated by less than 10 km exhibited valley-based population genetic clustering and isolation-by-distance (IBD), while gene flow among populations was best explained by models using information about their distributions at the local last glacial maximum (LGML , 58 kya), not their contemporary distribution. Maximum likelihood lineage history among populations, and among subpopulations as little as 500 m apart, recapitulated glaciation history across the landscape. We also found signals of isolated population expansion following the retreat of LGML glaciers. These results reveal the fine-scale, long-term historical influence of landscape and glaciation on the genetic structuring of populations of an endangered and economically important insect species. Similar mechanisms, given enough time and continued isolation, could explain the contribution of glacier refugia to the generation of species diversity among the Hengduan Mountains.


Assuntos
Hypocreales , Mariposas , Animais , Mariposas/genética , Filogenia , Hypocreales/genética , Genética Populacional , Insetos
7.
Mol Ecol ; 32(3): 560-574, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36336800

RESUMO

Migration is typically associated with risk and uncertainty at the population level, but little is known about its cost-benefit trade-offs at the species level. Migratory insects in particular often exhibit strong demographic fluctuations due to local bottlenecks and outbreaks. Here, we use genomic data to investigate levels of heterozygosity and long-term population size dynamics in migratory insects, as an alternative to classical local and short-term approaches such as regional field monitoring. We analyse whole-genome sequences from 97 Lepidoptera species and show that individuals of migratory species have significantly higher levels of genome-wide heterozygosity, a proxy for effective population size, than do nonmigratory species. Also, we contribute whole-genome data for one of the most emblematic insect migratory species, the painted lady butterfly (Vanessa cardui), sampled across its worldwide distributional range. This species exhibits one of the highest levels of genomic heterozygosity described in Lepidoptera (2.95 ± 0.15%). Coalescent modelling (PSMC) shows historical demographic stability in V. cardui, and high effective population size estimates of 2-20 million individuals 10,000 years ago. The study reveals that the high risks associated with migration and local environmental fluctuations do not seem to decrease overall genetic diversity and demographic stability in migratory Lepidoptera. We propose a "compensatory" demographic model for migratory r-strategist organisms in which local bottlenecks are counterbalanced by reproductive success elsewhere within their typically large distributional ranges. Our findings highlight that the boundaries of populations are substantially different for sedentary and migratory insects, and that, in the latter, local and even regional field monitoring results may not reflect whole population dynamics. Genomic diversity patterns may elucidate key aspects of an insect's migratory nature and population dynamics at large spatiotemporal scales.


Assuntos
Borboletas , Humanos , Animais , Borboletas/genética , Migração Animal , Insetos , Densidade Demográfica , Variação Genética/genética
8.
Syst Biol ; 71(2): 382-395, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-34022059

RESUMO

Taxa are frequently labeled incertae sedis when their placement is debated at ranks above the species level, such as their subgeneric, generic, or subtribal placement. This is a pervasive problem in groups with complex systematics due to difficulties in identifying suitable synapomorphies. In this study, we propose combining DNA barcodes with a multilocus backbone phylogeny in order to assign taxa to genus or other higher-level categories. This sampling strategy generates molecular matrices containing large amounts of missing data that are not distributed randomly: barcodes are sampled for all representatives, and additional markers are sampled only for a small percentage. We investigate the effects of the degree and randomness of missing data on phylogenetic accuracy using simulations for up to 100 markers in 1000-tips trees, as well as a real case: the subtribe Polyommatina (Lepidoptera: Lycaenidae), a large group including numerous species with unresolved taxonomy. Our simulation tests show that when a strategic and representative selection of species for higher-level categories has been made for multigene sequencing (approximately one per simulated genus), the addition of this multigene backbone DNA data for as few as 5-10% of the specimens in the total data set can produce high-quality phylogenies, comparable to those resulting from 100% multigene sampling. In contrast, trees based exclusively on barcodes performed poorly. This approach was applied to a 1365-specimen data set of Polyommatina (including ca. 80% of described species), with nearly 8% of representative species included in the multigene backbone and the remaining 92% included only by mitochondrial COI barcodes, a phylogeny was generated that highlighted potential misplacements, unrecognized major clades, and placement for incertae sedis taxa. We use this information to make systematic rearrangements within Polyommatina, and to describe two new genera. Finally, we propose a systematic workflow to assess higher-level taxonomy in hyperdiverse groups. This research identifies an additional, enhanced value of DNA barcodes for improvements in higher-level systematics using large data sets. [Birabiro; DNA barcoding; incertae sedis; Kipepeo; Lycaenidae; missing data; phylogenomic; phylogeny; Polyommatina; supermatrix; systematics; taxonomy].


Assuntos
Código de Barras de DNA Taxonômico , Lepidópteros , Animais , DNA , Código de Barras de DNA Taxonômico/métodos , Filogenia , Análise de Sequência de DNA
9.
J Exp Biol ; 226(7)2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36967715

RESUMO

The Australian lycaenid butterfly Jalmenus evagoras has iridescent wings that are sexually dimorphic, spectrally and in their degree of polarization, suggesting that these properties are likely to be important in mate recognition. We first describe the results of a field experiment showing that free-flying individuals of J. evagoras discriminate between visual stimuli that vary in polarization content in blue wavelengths but not in others. We then present detailed reflectance spectrophotometry measurements of the polarization content of male and female wings, showing that female wings exhibit blue-shifted reflectance, with a lower degree of polarization relative to male wings. Finally, we describe a novel method for measuring alignment of ommatidial arrays: by measuring variation of depolarized eyeshine intensity from patches of ommatidia as a function of eye rotation, we show that (a) individual rhabdoms contain mutually perpendicular microvilli; (b) many rhabdoms in the array have their microvilli misaligned with respect to neighboring rhabdoms by as much as 45 deg; and (c) the misaligned ommatidia are useful for robust polarization detection. By mapping the distribution of the ommatidial misalignments in eye patches of J. evagoras, we show that males and females exhibit differences in the extent to which ommatidia are aligned. Both the number of misaligned ommatidia suitable for robust polarization detection and the number of aligned ommatidia suitable for edge detection vary with respect to both sex and eye patch elevation. Thus, J. evagoras exhibits finely tuned ommatidial arrays suitable for perception of polarized signals, likely to match sex-specific life history differences in the utility of polarized signals.


Assuntos
Borboletas , Animais , Masculino , Feminino , Humanos , Austrália , Visão Ocular , Células Fotorreceptoras de Invertebrados
10.
Am J Bot ; 110(2): e16126, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36633920

RESUMO

PREMISE: Quantifying how closely related plant species differ in susceptibility to insect herbivory is important for understanding the variation in evolutionary pressures on plant functional traits. However, empirically measuring in situ variation in herbivory spanning the geographic range of a plant-insect complex is logistically difficult. Recently, new methods have been developed using herbarium specimens to investigate patterns in plant-insect symbioses across large geographic scales. Such investigations provide insights into how accelerated anthropogenic changes may impact plant-insect interactions that are of ecological or agricultural importance. METHODS: Here, we analyze 274 pressed herbarium samples to investigate variation in herbivory damage in 13 different species of the economically important plant genus Cucurbita (Cucurbitaceae). This collection is composed of specimens of wild, undomesticated Cucurbita that were collected from across their native range, and Cucurbita cultivars collected from both within their native range and from locations where they have been introduced for agriculture in temperate North America. RESULTS: Herbivory is common on individuals of all Cucurbita species collected throughout their geographic ranges. However, estimates of herbivory varied considerably among individuals, with mesophytic species accruing more insect damage than xerophytic species, and wild specimens having more herbivory than specimens collected from human-managed habitats. CONCLUSIONS: Our study suggests that long-term evolutionary changes in habitat from xeric to mesic climates and wild to human-managed habitats may mediate the levels of herbivory pressure from coevolved herbivores. Future investigations into the potential factors that contribute to herbivory may inform the management of domesticated crop plants and their insect herbivores.


Assuntos
Cucurbita , Humanos , Animais , Herbivoria , Insetos , Ecossistema , Evolução Biológica , Plantas
11.
Environ Microbiol ; 24(8): 3500-3516, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35384233

RESUMO

Plant-associated microbial communities can profoundly affect plant health and success, and research is still uncovering factors driving the assembly of these communities. Here, we examine how geography versus host species affects microbial community structure and differential abundances of individual taxa. We use metabarcoding to characterize the bacteria and eukaryotes associated with five, often co-occurring species of Sarracenia pitcher plants (Sarraceniaceae) and three natural hybrids along the longitudinal gradient of the U.S. Gulf Coast, as well as samples from S. purpurea in Massachusetts. To tease apart the effects of geography versus host species, we focus first on sites with co-occurring species and then on species located across different sites. Our analyses show that bacterial and eukaryotic community structures are clearly and consistently influenced by host species identity, with geographic factors also playing a role. Naturally occurring hybrids appear to also host unique communities, which are in some ways intermediate between their parent species. We see significant effects of geography (site and longitude), but these generally explain less of the variation among pitcher communities. Overall, in Sarracenia pitchers, host plant phenotype significantly affects the pitcher microbiomes and other associated organisms.


Assuntos
Microbiota , Sarraceniaceae , Bactérias/genética , Eucariotos , Geografia , Microbiota/genética , Sarraceniaceae/genética , Sarraceniaceae/microbiologia
12.
Proc Biol Sci ; 289(1973): 20212650, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35473372

RESUMO

The collection of caterpillar fungus accounts for 50-70% of the household income of thousands of Himalayan communities and has an estimated market value of $5-11 billion across Asia. However, Himalayan collectors are at multiple economic disadvantages compared with collectors on the Tibetan Plateau because their product is not legally recognized. Using a customized hybrid-enrichment probe set and market-grade caterpillar fungus (with samples up to 30 years old) from 94 production zones across Asia, we uncovered clear geography-based signatures of historical dispersal and significant isolation-by-distance among caterpillar fungus hosts. This high-throughput approach can readily distinguish samples from major production zones with definitive geographical resolution, especially for samples from the Himalayan region that form monophyletic clades in our analysis. Based on these results, we propose a two-step procedure to help local communities authenticate their produce and improve this multi-national trade-route without creating opportunities for illegal exports and other forms of economic exploitation. We argue that policymakers and conservation practitioners must encourage the fair trade of caterpillar fungus in addition to sustainable harvesting to support a trans-boundary conservation effort that is much needed for this natural commodity in the Himalayan region.


Assuntos
Fungos , Ásia , Geografia
13.
Proc Biol Sci ; 288(1950): 20202512, 2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-33975481

RESUMO

Male butterflies in the hyperdiverse tribe Eumaeini possess an unusually complex and diverse repertoire of secondary sexual characteristics involved in pheromone production and dissemination. Maintaining multiple sexually selected traits is likely to be metabolically costly, potentially resulting in trade-offs in the evolution of male signals. However, a phylogenetic framework to test hypotheses regarding the evolution and maintenance of male sexual traits in Eumaeini has been lacking. Here, we infer a comprehensive, time-calibrated phylogeny from 379 loci for 187 species representing 91% of the 87 described genera. Eumaeini is a monophyletic group that originated in the late Oligocene and underwent rapid radiation in the Neotropics. We examined specimens of 818 of the 1096 described species (75%) and found that secondary sexual traits are present in males of 91% of the surveyed species. Scent pads and scent patches on the wings and brush organs associated with the genitalia were probably present in the common ancestor of Eumaeini and are widespread throughout the tribe. Brush organs and scent pads are negatively correlated across the phylogeny, exhibiting a trade-off in which lineages with brush organs are unlikely to regain scent pads and vice versa. In contrast, scent patches seem to facilitate the evolution of scent pads, although they are readily lost once scent pads have evolved. Our results illustrate the complex interplay between natural and sexual selection in the origin and maintenance of multiple male secondary sexual characteristics and highlight the potential role of sexual selection spurring diversification in this lineage.


Assuntos
Borboletas , Animais , Evolução Biológica , Masculino , Fenótipo , Feromônios , Filogenia
14.
PLoS Pathog ; 15(7): e1007942, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31323076

RESUMO

Exotic invasive species can influence the behavior and ecology of native and resident species, but these changes are often overlooked. Here we hypothesize that the ghost ant, Tapinoma melanocephalum, living in areas that have been invaded by the red imported fire ant, Solenopsis invicta, displays behavioral differences to interspecific competition that are reflected in both its trophic position and symbiotic microbiota. We demonstrate that T. melanocephalum workers from S. invicta invaded areas are less aggressive towards workers of S. invicta than those inhabiting non-invaded areas. Nitrogen isotope analyses reveal that colonies of T. melanocephalum have protein-rich diets in S. invicta invaded areas compared with the carbohydrate-rich diets of colonies living in non-invaded areas. Analysis of microbiota isolated from gut tissue shows that T. melanocephalum workers from S. invicta invaded areas also have different bacterial communities, including a higher abundance of Wolbachia that may play a role in vitamin B provisioning. In contrast, the microbiota of workers of T. melanocephalum from S. invicta-free areas are dominated by bacteria from the orders Bacillales, Lactobacillales and Enterobacteriales that may be involved in sugar metabolism. We further demonstrate experimentally that the composition and structure of the bacterial symbiont communities as well as the prevalence of vitamin B in T. melanocephalum workers from S. invicta invaded and non-invaded areas can be altered if T. melanocephalum workers are supplied with either protein-rich or carbohydrate-rich food. Our results support the hypothesis that bacterial symbiont communities can help hosts by buffering behavioral changes caused by interspecies competition as a consequence of biological invasions.


Assuntos
Formigas/microbiologia , Formigas/fisiologia , Interações entre Hospedeiro e Microrganismos/fisiologia , Espécies Introduzidas , Microbiota/fisiologia , Adaptação Fisiológica , Animais , Dieta , Ecossistema , Comportamento Alimentar , Especificidade da Espécie , Simbiose/fisiologia , Complexo Vitamínico B/metabolismo , Wolbachia/fisiologia
15.
Biol Lett ; 17(7): 20210123, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34283930

RESUMO

The last Xerces blue butterfly was seen in the early 1940s, and its extinction is credited to human urban development. This butterfly has become a North American icon for insect conservation, but some have questioned whether it was truly a distinct species, or simply an isolated population of another living species. To address this question, we leveraged next-generation sequencing using a 93-year-old museum specimen. We applied a genome skimming strategy that aimed for the organellar genome and high-copy fractions of the nuclear genome by a shallow sequencing approach. From these data, we were able to recover over 200 million nucleotides, which assembled into several phylogenetically informative markers and the near-complete mitochondrial genome. From our phylogenetic analyses and haplotype network analysis we conclude that the Xerces blue butterfly was a distinct species driven to extinction.


Assuntos
Borboletas , Extinção Biológica , Genoma Mitocondrial , Animais , Borboletas/genética , Genômica , Museus , Filogenia , Análise de Sequência de DNA
16.
Appl Environ Microbiol ; 86(3)2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31732571

RESUMO

Most clinical antibiotics are derived from actinomycete natural products discovered at least 60 years ago. However, the repeated rediscovery of known compounds led the pharmaceutical industry to largely discard microbial natural products (NPs) as a source of new chemical diversity. Recent advances in genome sequencing have revealed that these organisms have the potential to make many more NPs than previously thought. Approaches to unlock NP biosynthesis by genetic manipulation of strains, by the application of chemical genetics, or by microbial cocultivation have resulted in the identification of new antibacterial compounds. Concomitantly, intensive exploration of coevolved ecological niches, such as insect-microbe defensive symbioses, has revealed these to be a rich source of chemical novelty. Here, we report the new lanthipeptide antibiotic kyamicin, which was generated through the activation of a cryptic biosynthetic gene cluster identified by genome mining Saccharopolyspora species found in the obligate domatium-dwelling ant Tetraponera penzigi of the ant plant Vachellia drepanolobium Transcriptional activation of this silent gene cluster was achieved by ectopic expression of a pathway-specific activator under the control of a constitutive promoter. Subsequently, a heterologous production platform was developed which enabled the purification of kyamicin for structural characterization and bioactivity determination. This strategy was also successful for the production of lantibiotics from other genera, paving the way for a synthetic heterologous expression platform for the discovery of lanthipeptides that are not detected under laboratory conditions or that are new to nature.IMPORTANCE The discovery of novel antibiotics to tackle the growing threat of antimicrobial resistance is impeded by difficulties in accessing the full biosynthetic potential of microorganisms. The development of new tools to unlock the biosynthesis of cryptic bacterial natural products will greatly increase the repertoire of natural product scaffolds. Here, we report a strategy for the ectopic expression of pathway-specific positive regulators that can be rapidly applied to activate the biosynthesis of cryptic lanthipeptide biosynthetic gene clusters. This allowed the discovery of a new lanthipeptide antibiotic directly from the native host and via heterologous expression.


Assuntos
Antibacterianos/biossíntese , Bacteriocinas/biossíntese , Genes Bacterianos , Saccharopolyspora/química , Animais , Antibacterianos/isolamento & purificação , Antibacterianos/metabolismo , Formigas/microbiologia , Bacteriocinas/isolamento & purificação , Bacteriocinas/metabolismo , Fabaceae , Família Multigênica , Saccharopolyspora/genética
17.
Mol Phylogenet Evol ; 148: 106817, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32289447

RESUMO

Although best known for its extraordinary radiations of endemic plant species, the South African fynbos is home to a great diversity of phytophagous insects, including butterflies in the genus Chrysoritis (Lepidoptera: Lycaenidae). These butterflies are remarkably uniform morphologically; nevertheless, they comprise 43 currently accepted species and 68 currently valid taxonomic names. While many species have highly restricted, dot-like distributions, others are widespread. Here, we investigate the phylogenetic and biogeographic history underlying their diversification by analyzing molecular markers from 406 representatives of all described species throughout their respective ranges. We recover monophyletic clades for both C. chrysaor and C. thysbe species-groups, and identify a set of lineages that fall between them. The estimated age of divergence for the genus is 32 Mya, and we document significantly rapid diversification of the thysbe species-group in the Pleistocene (~2 Mya). Using ancestral geographic range reconstruction, we show that West Fynbos is the most likely region of origin for the radiation of the thysbe species-group. The colonization of this region occurred 9 Mya and appears to have been followed by a long period of relative stasis before a recent increase in diversification. Thus, the thysbe radiation does not appear to have resulted from the colonization of new biogeographic areas. Rather, the impact of species interactions (with ants and plants), the appearance of key innovations, and/or the opening of new ecological niche space in the region might explain the sudden burst of speciation that occurred in this group 2 Mya. The biogeographic model suggests two different diversification processes with few historical cross-colonisations, one in eastern South Africa for the C. chrysaor group and the other in western South Africa for the remaining taxa. Distributional range assessments and ecological niche models for each species show important niche overlap, and in a few cases, complete overlap. However, these shared traits are not explained by phylogenetic history. Chrysoritis taxa frequently fly in sympatry and gene tree reticulation appears to be widespread at the species level, suggesting that several episodes of range shifts might have led to secondary sympatries, allowing limited gene flow that challenges species delimitation efforts. In addition, the unusually high diversification rate for the thysbe clade of 1.35 [0.91-1.81] lineages per million years also suggests the possibility of taxonomic oversplitting. The phylogeny presented here provides a framework for a taxonomic revision of the genus. We highlight cases of potential synonymy both in allopatry and sympatry, and stress the importance of dedicated studies to assess potential pre- and post-zygotic barriers giving rise to species delimitations of the thysbe group.


Assuntos
Biodiversidade , Borboletas/classificação , Animais , Filogeografia , África do Sul , Simpatria
18.
Biol Lett ; 16(4): 20200103, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32315595

RESUMO

Wind is a critical factor in the ecology of pollinating insects such as bees. However, the role of wind in determining patterns of bee abundance and floral visitation rates across space and time is not well understood. Orchid bees are an important and diverse group of neotropical pollinators that harvest pollen, nectar and resin from plants. In addition, male orchid bees collect volatile scents that they store in special chambers in their hind legs, and for which the wind-based dispersal of odours may play a particularly crucial role. Here, we take advantage of this specialized scent foraging behaviour to study the effects of wind on orchid bee visitation at scent sources in a fragmented tropical forest ecosystem. Consistent with previous work, forest cover increased orchid bee visitation. In addition, we find that temporal changes in wind speed and turbulence increase visitation to scent stations within sites. These results suggest that the increased dispersal of attractive scents provided by wind and turbulence outweighs any biomechanical or energetic costs that might deter bees from foraging in these conditions. Overall, our results highlight the significance of wind in the ecology of these important pollinators in neotropical forests.


Assuntos
Ecossistema , Polinização , Animais , Abelhas , Flores , Florestas , Masculino , Néctar de Plantas , Vento
19.
Microb Ecol ; 80(2): 334-349, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32291478

RESUMO

Elevation is an important determinant of ecological community composition. It integrates several abiotic features and leads to strong, repeatable patterns of community structure, including changes in the abundance and richness of numerous taxa. However, the influence of elevational gradients on microbes is understudied relative to plants and animals. To compare the influence of elevation on multiple taxa simultaneously, we sampled phytotelm communities within a tropical pitcher plant (Nepenthes mindanaoensis) along a gradient from 400 to 1200 m a.s.l. We use a combination of metabarcoding and physical counts to assess diversity and richness of bacteria, micro-eukaryotes, and arthropods, and compare the effect of elevation on community structure to that of regulation by a number of plant factors. Patterns of community structure differed between bacteria and eukaryotes, despite their living together in the same aquatic microhabitats. Elevation influences community composition of eukaryotes to a significantly greater degree than it does bacteria. When examining pitcher characteristics, pitcher dimorphism has an effect on eukaryotes but not bacteria, while variation in pH levels strongly influences both taxa. Consistent with previous ecological studies, arthropod abundance in phytotelmata decreases with elevation, but some patterns of abundance differ between living inquilines and prey.


Assuntos
Altitude , Bactérias/isolamento & purificação , Biodiversidade , Caryophyllales/microbiologia , Animais , Artrópodes , Bactérias/classificação , Caryophyllales/parasitologia , Eucariotos , Microbiota , Filipinas
20.
Proc Natl Acad Sci U S A ; 114(25): 6569-6574, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28533385

RESUMO

Social animals must communicate to define group membership and coordinate social organization. For social insects, communication is predominantly mediated through chemical signals, and as social complexity increases, so does the requirement for a greater diversity of signals. This relationship is particularly true for advanced eusocial insects, including ants, bees, and wasps, whose chemical communication systems have been well-characterized. However, we know surprisingly little about how these communication systems evolve during the transition between solitary and group living. Here, we demonstrate that the sensory systems associated with signal perception are evolutionarily labile. In particular, we show that differences in signal production and perception are tightly associated with changes in social behavior in halictid bees. Our results suggest that social species require a greater investment in communication than their solitary counterparts and that species that have reverted from eusociality to solitary living have repeatedly reduced investment in these potentially costly sensory perception systems.


Assuntos
Abelhas/fisiologia , Comportamento Animal/fisiologia , Animais , Evolução Biológica , Comunicação , Comportamento Social
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa