RESUMO
Noise from unmanned aerial vehicles, commonly referred to as "drones," will likely shape our acoustic environment in the near future. Yet, reactions of the population to this new noise source are still little explored. The objective of this study was to investigate short-term noise annoyance reactions to drones in a controlled laboratory experiment. Annoyance to (i) two quadcopters of different sizes in relation to common contemporary transportation noise sources (jet aircraft, propeller aircraft, helicopters, single car passbys), and (ii) different drone maneuvers (takeoff; landing; high, medium, and low flybys) flown at different speeds and elevations was systematically assessed. The results revealed that, at the same sound exposure level, drones are perceived as substantially more annoying than other airborne vehicles and passenger cars. Furthermore, for drone maneuvers, landings, and takeoffs are more annoying than flybys, as are maneuvers flown at low speed. Different loudness metrics (LAE, LDE, effective perceived noise level, psychoacoustic loudness level) accounted for drone noise annoyance ratings to an equal degree. An analysis of psychoacoustic parameters highlighted the significant link between drone noise annoyance and tonality, sharpness, and loudness level. The results suggest a different perception and an increased annoyance potential of drones, which will likely require specifically tailored legislation.
RESUMO
This paper introduces a methodology tailored to capture, post-process, and replicate audio-visual data of outdoor environments (urban or natural) for VR experiments carried out within a controlled laboratory environment. The methodology consists of 360∘ video and higher order ambisonic (HOA) field recordings and subsequent calibrated spatial sound reproduction with a spherical loudspeaker array and video played back via a head-mounted display using a game engine and a graphical user interface for a perceptual experimental questionnaire. Attention was given to the equalisation and calibration of the ambisonic microphone and to the design of different ambisonic decoders. A listening experiment was conducted to evaluate four different decoders (one 2D first-order ambisonic decoder and three 3D third-order decoders) by asking participants to rate the relative (perceived) realism of recorded outdoor soundscapes reproduced with these decoders. The results showed that the third-order decoders were ranked as more realistic.
RESUMO
Phased microphone array methods are increasingly used to localize and quantify noise sources of aircraft under flight condition. However, beamforming results suffer from loss of image resolution and corruption of sound levels due to atmospheric turbulence causing coherence loss between microphones. A synthesis method is presented that reproduces these effects in a virtual environment. Sound propagation through turbulent atmosphere is described by models by Ostashev and Wilson and by von Kármán turbulence spectra. Spatial coherence is calculated based on the parabolic equation for statistically inhomogeneous, isotropic turbulence. Decorrelation of signals is achieved by time-varying mixing of mutually independent signals with identical PSD based on coherence factors. The concept of auralization is employed to account for propagation delay, geometrical spreading, Doppler effect, air absorption, and ground effect. The application is demonstrated for a virtual 56 m aperture microphone array. The impact of different meteorological conditions on the beamforming and deconvoluted results are presented. For increasing turbulence strength, the results show decreasing sound levels and increasingly blurred images. The proposed method allows us to reproduce the effects of turbulence-induced coherence loss in phased microphone array measurements and to optimize array designs and algorithms in a virtual, controllable environment.
RESUMO
Residents around airports are impacted by noise produced by civil aircraft operations. With the aim of reducing the negative effects of noise, new low-noise aircraft concepts and flight procedures are being developed. The design processes and the assessments of design variants can be supported by auralization of virtual flyovers. The plausibility of auralized aircraft is increased by considering the effects of atmospheric turbulence on sound propagation. This paper presents a simple approach to include turbulence-induced coherence loss in ground effect. Compared to earlier approaches, the proposed model is closer to the physical mechanisms. It is based on the von Kármán turbulence spectrum and a time-variant partial decorrelation filter. The application of the model to jet aircraft flyovers revealed audible improvements by reducing unnatural flanging. The proposed model increases the accuracy and plausibility of aircraft flyover auralizations. It will thus be applied in the perception-based evaluation of future aircraft concepts.
RESUMO
AIMS: Chronic exposure to nocturnal transportation noise has been linked to cardiovascular disorders with sleep impairment as the main mediator. Here we examined whether nocturnal transportation noise affects the main stress pathways, and whether it relates to changes in the macro and micro structure of sleep. METHODS AND RESULTS: Twenty-six young healthy participants (12 women, 24.6 ± 0.7 years, mean ± SE) spent five consecutive 24-h days and one last morning in the laboratory. The first (baseline) and last (recovery) nights comprised a quiet ambient scenario. In-between, four different noise scenarios (low/medium/high intermittent road or rail scenarios with an identical equivalent continuous sound level of 45 dB) were randomly presented during the 8-h nights. Participants felt more annoyed from the transportation noise scenarios compared to the quiet ambient scenario played back during the baseline and recovery nights (F5,117 = 10.2, p < 0.001). Nocturnal transportation noise did not significantly impact polysomnographically assessed sleep macrostructure, blood pressure, nocturnal catecholamine levels and morning cytokine levels. Evening cortisol levels increased after sleeping with highly intermittent road noise compared to baseline (p = 0.002, noise effect: F4,83 = 4.0, p = 0.005), a result related to increased cumulative duration of autonomic arousals during the noise nights (F5,106 = 3.4, p < 0.001; correlation: rpearson = 0.64, p = 0.006). CONCLUSION: Under controlled laboratory conditions, highly intermittent nocturnal road noise exposure at 45 dB increased the cumulative duration of autonomic arousals during sleep and next-day evening cortisol levels. Our results indicate that, without impairing sleep macrostructure, nocturnal transportation noise of 45 dB is a physiological stressor that affects the hypothalamic-pituitary-adrenal axis during the following day in healthy young good sleepers.
Assuntos
Sistema Cardiovascular , Ruído dos Transportes , Sono , Adulto , Nível de Alerta , Sistema Cardiovascular/fisiopatologia , Feminino , Humanos , Sistema Hipotálamo-Hipofisário , Masculino , Ruído dos Transportes/efeitos adversos , Sistema Hipófise-Suprarrenal , Adulto JovemRESUMO
AIMS: The present study aimed to disentangle the risk of the three major transportation noise sources-road, railway, and aircraft traffic-and the air pollutants NO2 and PM2.5 on myocardial infarction (MI) mortality in Switzerland based on high quality/fine resolution exposure modelling. METHODS AND RESULTS: We modelled long-term exposure to outdoor road traffic, railway, and aircraft noise levels, as well as NO2 and PM2.5 concentration for each address of the 4.40 million adults (>30 years) in the Swiss National Cohort (SNC). We investigated the association between transportation noise/air pollution exposure and death due to MI during the follow-up period 2000-08, by adjusting noise [Lden(Road), Lden(Railway), and Lden(Air)] estimates for NO2 and/or PM2.5 and vice versa by multipollutant Cox regression models considering potential confounders. Adjusting noise risk estimates of MI for NO2 and/or PM2.5 did not change the hazard ratios (HRs) per 10 dB increase in road traffic (without air pollution: 1.032, 95% CI: 1.014-1.051, adjusted for NO2 and PM2.5: 1.034, 95% CI: 1.014-1.055), railway traffic (1.020, 95% CI: 1.007-1.033 vs. 1.020, 95% CI: 1.007-1.033), and aircraft traffic noise (1.025, 95% CI: 1.006-1.045 vs. 1.025, 95% CI: 1.005-1.046). Conversely, noise adjusted HRs for air pollutants were lower than corresponding estimates without noise adjustment. Hazard ratio per 10 µg/m³ increase with and without noise adjustment were 1.024 (1.005-1.043) vs. 0.990 (0.965-1.016) for NO2 and 1.054 (1.013-1.093) vs. 1.019 (0.971-1.071) for PM2.5. CONCLUSION: Our study suggests that transportation noise is associated with MI mortality, independent from air pollution. Air pollution studies not adequately adjusting for transportation noise exposure may overestimate the cardiovascular disease burden of air pollution.
Assuntos
Poluição do Ar/efeitos adversos , Exposição Ambiental/efeitos adversos , Infarto do Miocárdio/mortalidade , Ruído dos Transportes/efeitos adversos , Adulto , Idoso , Aeronaves , Automóveis , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Ferrovias , Fatores de Risco , SuíçaRESUMO
Helicopter noise exhibits distinctive acoustical characteristics (e.g., pulsation) compared to noise from propeller-driven aircraft which contains tonal components. Whereas, at comparable sound exposure levels (LAE), annoyance reactions to these sources might be different, knowledge of potential annoyance differences is scarce. This paper reports a comparison between short-term annoyance reactions to noise from light-weight helicopters and propeller-driven aircraft in a laboratory setup. Stimuli were presented with a 3D sound reproduction system in a listening test facility based on field recordings of takeoffs and landings. Propagation filtering and amplitude changes were carried out to simulate various propagation distances and source levels, covering a reasonable LAE range from 64 to 85 dB(A) for a stimuli length of 24 s. Fifty-six subjects rated their short-term annoyance reactions on the ICBEN 11-point numerical scale. Associations between design variables (source type, procedure, and LAE) and short-term annoyance were explored by means of a linear mixed-effect model. LAE was found to be the major predictor. For the major range of LAE, no significant difference was found between annoyance to noise from the two aircraft types. Observed level differences at equal annoyance ratings were below 1 dB. Furthermore, helicopter landings were found slightly more annoying than helicopter takeoffs.
RESUMO
Most studies published to date consider single noise sources and the reported noise metrics are not informative about the peaking characteristics of the source under investigation. Our study focuses on the association between cardiovascular mortality in Switzerland and the three major transportation noise sources-road, railway and aircraft traffic-along with a novel noise metric termed intermittency ratio (IR), expressing the percentage contribution of individual noise events to the total noise energy from all sources above background levels. We generated Swiss-wide exposure models for road, railway and aircraft noise for 2001. Noise from the most exposed façade was linked to geocodes at the residential floor height for each of the 4.41 million adult (>30 y) Swiss National Cohort participants. For the follow-up period 2000-2008, we investigated the association between all noise exposure variables [Lden(Road), Lden(Rail), Lden(Air), and IR at night] and various cardiovascular primary causes of death by multipollutant Cox regression models adjusted for potential confounders including NO2. The most consistent associations were seen for myocardial infarction: adjusted hazard ratios (HR) (95% CI) per 10 dB increase of exposure were 1.038 (1.019-1.058), 1.018 (1.004-1.031), and 1.026 (1.004-1.048) respectively for Lden(Road), Lden(Rail), and Lden(Air). In addition, total IR at night played a role: HRs for CVD were non-significant in the 1st, 2nd and 5th quintiles whereas they were 1.019 (1.002-1.037) and 1.021 (1.003-1.038) for the 3rd and 4th quintiles. Our study demonstrates the impact of all major transportation noise sources on cardiovascular diseases. Mid-range IR levels at night (i.e. between continuous and highly intermittent) are potentially more harmful than continuous noise levels of the same average level.
Assuntos
Doenças Cardiovasculares/mortalidade , Ruído dos Transportes/estatística & dados numéricos , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Modelos de Riscos Proporcionais , Suíça/epidemiologiaRESUMO
Noise exposure-response relationships are used to estimate the effects of noise on individuals or a population. Such relationships may be derived from independent or repeated binary observations, and modeled by different statistical methods. Depending on the method by which they were established, their application in population risk assessment or estimation of individual responses may yield different results, i.e., predict "weaker" or "stronger" effects. As far as the present body of literature on noise effect studies is concerned, however, the underlying statistical methodology to establish exposure-response relationships has not always been paid sufficient attention. This paper gives an overview on two statistical approaches (subject-specific and population-averaged logistic regression analysis) to establish noise exposure-response relationships from repeated binary observations, and their appropriate applications. The considerations are illustrated with data from three noise effect studies, estimating also the magnitude of differences in results when applying exposure-response relationships derived from the two statistical approaches. Depending on the underlying data set and the probability range of the binary variable it covers, the two approaches yield similar to very different results. The adequate choice of a specific statistical approach and its application in subsequent studies, both depending on the research question, are therefore crucial.
Assuntos
Percepção Auditiva , Exposição Ambiental/efeitos adversos , Humor Irritável , Modelos Estatísticos , Ruído/efeitos adversos , Aeronaves , Automóveis , Exposição Ambiental/estatística & dados numéricos , Humanos , Modelos Logísticos , Ruído dos Transportes/efeitos adversos , Fatores de Risco , VentoRESUMO
Current literature suggests that wind turbine noise is more annoying than transportation noise. To date, however, it is not known which acoustic characteristics of wind turbines alone, i.e., without effect modifiers such as visibility, are associated with annoyance. The objective of this study was therefore to investigate and compare the short-term noise annoyance reactions to wind turbines and road traffic in controlled laboratory listening tests. A set of acoustic scenarios was created which, combined with the factorial design of the listening tests, allowed separating the individual associations of three acoustic characteristics with annoyance, namely, source type (wind turbine, road traffic), A-weighted sound pressure level, and amplitude modulation (without, periodic, random). Sixty participants rated their annoyance to the sounds. At the same A-weighted sound pressure level, wind turbine noise was found to be associated with higher annoyance than road traffic noise, particularly with amplitude modulation. The increased annoyance to amplitude modulation of wind turbines is not related to its periodicity, but seems to depend on the modulation frequency range. The study discloses a direct link of different acoustic characteristics to annoyance, yet the generalizability to long-term exposure in the field still needs to be verified.
RESUMO
Recently, the accuracy of the parallel transfer matrix method (P-TMM) and the admittance sum method (ASM) in the prediction of the absorption properties of parallel assemblies of materials was investigated [Verdière, Panneton, Elkoun, Dupont, and Leclaire, J. Acoust. Soc. Am. 136, EL90-EL95 (2014)]. It was demonstrated that P-TMM is more versatile than ASM, as a larger variety of different backing configurations can be handled. Here it will be shown that the same universality is offered by the equivalent circuit method.
RESUMO
Noise mitigation is the main advantage of semi-dense asphalt (SDA) pavements compared to traditional pavements such as stone-mastic asphalt (SMA), but noise is not quantitatively considered in traditional life cycle assessment (LCA). This article performs a comprehensive LCA for SMA and SDA including noise considerations. State-of-the-art sound emission and acoustical ageing models were used to determine the road traffic noise. The latest Swiss dose-response curves and current noise exposure data were used to evaluate health impacts due to noise. Additionally, traditional LCA is also included for assessing the greenhouse gas emissions, non-renewable cumulative energy demand and health impacts of non-noise processes. The results show that SDA causes around 70 % higher greenhouse gases and energy demand than SMA, primarily due to its shorter service life. However, the noise impacts in disability adjusted life years (DALYs) are higher by two to three orders of magnitude than non-noise processes, and the use of SDA can reduce 40 % of the total DALYs. It is shown that road traffic noise plays a significant role in the LCA of pavements. The trade-off between greenhouse gas and energy related impacts, on the one hand, and health effects, on the other hand, requires critical consideration by decision makers when promoting low-noise pavements.
Assuntos
Gases de Efeito Estufa , Animais , Estágios do Ciclo de Vida , RuídoRESUMO
The number of operations of Unmanned Aerial Vehicles (UAV), commonly referred to as "drones", has strongly increased in the past and is likely to further grow in the future. Therefore, drones are becoming a growing new source of environmental noise pollution, and annoyance reactions to drone noise are likely to occur in an increasing share of the population. To date, research on drone noise emission characteristics, and in particular also on health impacts, seems scarce, but systematic overviews on these topics are missing. The objective of this study was to establish a systematic literature review on drone noise emissions and noise effects on humans. The paper presents the methodology of the systematic reviews performed separately for noise emission and noise effects, assembles current literature, gives an overview on the state of knowledge, and identifies research gaps. Current literature suggests that drone noise is substantially more annoying than road traffic or aircraft noise due to special acoustic characteristics such as pure tones and high-frequency broadband noise. A range of open questions remains to be tackled by future studies.
Assuntos
Aeronaves , Ruído , Acústica , Humanos , Ruído/efeitos adversosRESUMO
Prospective evidence on the risk of depression in relation to transportation noise exposure and noise annoyance is limited and mixed. We aimed to investigate the associations of long-term exposure to source-specific transportation noise and noise annoyance with incidence of depression in the SAPALDIA (Swiss cohort study on air pollution and lung and heart diseases in adults) cohort. We investigated 4,581 SAPALDIA participants without depression in the year 2001/2002. Corresponding one-year mean road, railway and aircraft day-evening-night noise (Lden) was calculated at the most exposed façade of the participants' residential floors, and transportation noise annoyance was assessed on an 11-point scale. Incident cases of depression were identified in 2010/2011, and comprised participants reporting physician diagnosis, intake of antidepressant medication or having a short form-36 mental health score < 50. We used robust Poisson regressions to estimate the mutually adjusted relative risks (RR) and 95% confidence intervals (CI) of depression, independent of traffic-related air pollution and other potential confounders. Incidence of depression was 11 cases per 1,000 person-years. In single exposure models, we observed positive but in part, statistically non-significant associations (per 10 dB) of road traffic Lden [RR: 1.06 (0.93, 1.22)] and aircraft Lden [RR: 1.19 (0.93, 1.53)], and (per 1-point difference) of noise annoyance [RR: 1.05 (1.02, 1.08)] with depression risk. In multi-exposure model, noise annoyance effect remained unchanged, with weaker effects of road traffic Lden [(RR: 1.02 (0.89, 1.17)] and aircraft Lden [(RR: 1.17 (0.90, 1.50)]. However, there were statistically significant indirect effects of road traffic Lden [(ß: 0.02 (0.01, 0.03)] and aircraft Lden [ß: 0.01 (0.002, 0.02)] via noise annoyance. There were no associations with railway Lden in the single and multi-exposure models [(RRboth models: 0.88 (0.75, 1.03)]. We made similar findings among 2,885 non-movers, where the effect modification and cumulative risks were more distinct. Noise annoyance effect in non-movers was stronger among the insufficiently active (RR: 1.09; 95%CI: 1.02, 1.17; pinteraction = 0.07) and those with daytime sleepiness [RR: 1.07 (1.02, 1.12); pinteraction = 0.008]. Cumulative risks of Lden in non-movers showed additive tendencies for the linear cumulative risk [(RRper 10dB of combined sources: 1.31 (0.90, 1.91)] and the categorical cumulative risk [(RRtriple- vs. zero-source ≥45 dB: 2.29 (1.02, 5.14)], and remained stable to noise annoyance. Transportation noise level and noise annoyance may jointly and independently influence the risk of depression. Combined long-term exposures to noise level seems to be most detrimental, largely acting via annoyance. The moderation of noise annoyance effect by daytime sleepiness and physical activity further contribute to clarifying the involved mechanisms. More evidence is needed to confirm these findings for effective public health control of depression and noise exposure burden.
Assuntos
Ruído dos Transportes , Adulto , Estudos de Coortes , Depressão/epidemiologia , Depressão/etiologia , Exposição Ambiental , Humanos , Incidência , Ruído dos Transportes/efeitos adversos , Estudos ProspectivosRESUMO
STUDY OBJECTIVES: The present study aimed at assessing the temporal non-rapid eye movement (NREM) EEG arousal distribution within and across sleep cycles and its modifications with aging and nighttime transportation noise exposure, factors that typically increase the incidence of EEG arousals. METHODS: Twenty-six young (19-33 years, 12 women) and 16 older (52-70 years, 8 women) healthy volunteers underwent a 6-day polysomnographic laboratory study. Participants spent two noise-free nights and four transportation noise exposure nights, two with continuous and two characterized by eventful noise (average sound levels of 45 dB, maximum sound levels between 50 and 62 dB for eventful noise). Generalized mixed models were used to model the time course of EEG arousal rates during NREM sleep and included cycle, age, and noise as independent variables. RESULTS: Arousal rate variation within NREM sleep cycles was best described by a u-shaped course with variations across cycles. Older participants had higher overall arousal rates than the younger individuals with differences for the first and the fourth cycle depending on the age group. During eventful noise nights, overall arousal rates were increased compared to noise-free nights. Additional analyses suggested that the arousal rate time course was partially mediated by slow wave sleep (SWS). CONCLUSIONS: The characteristic u-shaped arousal rate time course indicates phases of reduced physiological sleep stability both at the beginning and end of NREM cycles. Small effects on the overall arousal rate by eventful noise exposure suggest a preserved physiological within- and across-cycle arousal evolution with noise exposure, while aging affected the shape depending on the cycle.
Assuntos
Ruído dos Transportes , Nível de Alerta , Eletroencefalografia , Feminino , Humanos , Polissonografia , Sono , Fases do SonoRESUMO
Residents living in the vicinity of airports are exposed to noise from departing and approaching aircraft. Noise may be reduced by introducing novel aircraft technologies into vehicle retrofit, aircraft design and flight procedures. Nowadays, noise assessment and communication of noise are accomplished using conventional noise indicators that consider neither the perception of sound, nor its health effects. To overcome these limitations, this article presents a more comprehensive approach that supports the movement for perception-influenced design in order to reduce the negative environmental impacts and adverse health effects caused by increased air traffic noise. By means of auralization (the acoustical counterpart of visualization), possible future changes can be evaluated by considering the human perception of sound. In this study, in a virtual acoustic environment flyovers of different aircraft types and flight procedures are auralized for ground-based receiver locations, and subsequently evaluated in a psychoacoustic laboratory experiment with respect to short-term noise annoyance. Flight approaches of an existing reference aircraft, a possible low-noise retrofitted vehicle and a future low-noise vehicle design were simulated along standard and tailored flight procedures. To create realistic listening experiences of synthetic flyovers, auralization technologies were further developed regarding source synthesis, transitions between aircraft conditions, sound propagation effects and immersive sound reproduction. Listening experiments revealed significant annoyance reductions for low-noise aircraft types and tailored flight procedures, and that maximum benefit is achieved by the combined optimization of aircraft design and flight procedure. Further, it is shown that spatially distributed receivers need to be considered for a reliable low-noise aircraft technology evaluation. The reduction potential in terms of perceived noise by retrofitting current vehicles and designing new vehicle architectures is thus demonstrated. These findings suggest applying the proposed comprehensive approach to effectively reduce the impact of perceived air traffic noise in the future.
RESUMO
It is unclear which noise exposure time window and noise characteristics during nighttime are most detrimental for sleep quality in real-life settings. We conducted a field study with 105 volunteers wearing a wrist actimeter to record their sleep during seven days, together with concurrent outdoor noise measurements at their bedroom window. Actimetry-recorded sleep latency increased by 5.6 min (95% confidence interval (CI): 1.6 to 9.6 min) per 10 dB(A) increase in noise exposure during the first hour after bedtime. Actimetry-assessed sleep efficiency was significantly reduced by 2%-3% per 10 dB(A) increase in measured outdoor noise (Leq, 1h) for the last three hours of sleep. For self-reported sleepiness, noise exposure during the last hour prior to wake-up was most crucial, with an increase in the sleepiness score of 0.31 units (95% CI: 0.08 to 0.54) per 10 dB(A) Leq,1h. Associations for estimated indoor noise were not more pronounced than for outdoor noise. Taking noise events into consideration in addition to equivalent sound pressure levels (Leq) only marginally improved the statistical models. Our study provides evidence that matching the nighttime noise exposure time window to the individual's diurnal sleep-wake pattern results in a better estimate of detrimental nighttime noise effects on sleep. We found that noise exposure at the beginning and the end of the sleep is most crucial for sleep quality.
Assuntos
Exposição Ambiental/análise , Ruído dos Transportes , Autorrelato , Sono , Adulto , Cafeína , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , VigíliaRESUMO
The aim of the present study is to establish exposure-response relationships reflecting the percentage highly annoyed (%HA) as functions of road traffic, railway, and aircraft noise exposure, measured as day-evening-night level (Lden), as well as to elucidate the degree to which the acoustic indicator Intermittency Ratio (IR), which reflects the "eventfulness" of a noise situation, predicts noise annoyance. We conducted a mixed-mode representative population survey in a stratified random sample of 5592 residents exposed to transportation noise all over Switzerland. Source-specific noise exposure was calculated for each floor and each façade based on comprehensive traffic data. Noise annoyance was measured using the ICBEN 11-point scale. The survey was carried out in 4 waves at different times of the year. We hypothesized that in addition to Lden, the effects of noise on annoyance can be better explained when also considering the intensity of short-term variations of noise level over time. We therefore incorporated the acoustic indicator IR in the statistical models. For all noise sources, results revealed significant associations between Lden and %HA after controlling for confounders and independent predictors such as IR (measured over 24â¯h), exposure to other transportation noise sources, sex and age, language, home ownership, education level, living duration, temperature, and access to a quiet side of the dwelling. Aircraft noise annoyance scored markedly higher than annoyance to railway and road traffic noise at the same Lden level. Railway noise elicited higher percentages of highly annoyed persons than road traffic noise. Results furthermore suggest that for road traffic noise, IR has an additional effect on %HA and can explain shifts of the exposure-response curve of up to about 6â¯dB between low IR and high IR exposure situations, possibly due to the effect of different durations of noise-free intervals between events. For railway and aircraft noise annoyance, the predictive value of IR was limited.
Assuntos
Exposição Ambiental , Ruído dos Transportes , Adulto , Idoso , Aeronaves , Animais , Automóveis , Exposição Ambiental/estatística & dados numéricos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Estatísticos , Ferrovias , Inquéritos e Questionários , Suíça , Adulto JovemRESUMO
This survey investigates the cross-sectional association between nighttime road, rail and aircraft noise exposure and the probability to be highly sleep disturbed (%HSD), as measured by self-report in postal and online questionnaires. As part of the Swiss SiRENE study, a total of 5592 survey participants in the entire country were selected based on a stratified random sample of their dwelling. Self-reported sleep disturbance was measured using an ICBEN-style 5-point verbal scale. The survey was carried out in four waves at different times of the year. Source-specific noise exposure was calculated for several façade points for each dwelling. After adjustment for potential confounders, all three noise sources showed a statistically significant association between the nighttime noise level LNight at the most exposed façade point and the probability to report high sleep disturbance, as determined by logistic regression. The association was strongest for aircraft noise and weakest for road traffic noise. We a priori studied the role of a range of effect modifiers, including the "eventfulness" of noise exposure, expressed as the Intermittency Ratio (IR) metric, bedroom window position, bedroom orientation towards the closest street, access to a quiet side of the dwelling, degree of urbanization, sleep timing factors (bedtime and sleep duration), sleep medication intake, survey season and night air temperature. While bedroom orientation exhibited a strong moderating effect, with an Leq-equivalent of nearly 20 dB if the bedroom faces away from the nearest street, the LNight-%HSD associations were not affected by bedroom window position, sleep timing factors, survey season, or temperature.
Assuntos
Aeronaves/estatística & dados numéricos , Exposição Ambiental/estatística & dados numéricos , Ruído dos Transportes/efeitos adversos , Ruído dos Transportes/estatística & dados numéricos , Ferrovias/estatística & dados numéricos , Transtornos do Sono-Vigília/etiologia , Adulto , Idoso , Animais , Estudos Transversais , Feminino , Humanos , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Autorrelato , Inquéritos e Questionários , Suíça , Adulto JovemRESUMO
BACKGROUND: Epidemiological research on transportation noise uses different exposure assessment strategies based on façade point estimates or regulatory noise maps. The degree of exposure measurement error and subsequent potentially biased risk estimates related to exposure definition is unclear. We aimed to evaluate associations between transportation noise exposure and myocardial infarction (MI) mortality considering: assumptions about residential floor, façade point selection (loudest, quietest, nearest), façade point vs. noise map estimates, and influence of averaging exposure at coarser spatial scales (e.g. in ecological health studies). METHODS: Lden from the façade points were assigned to >4 million eligible adults in the Swiss National Cohort for the best match residential floor (reference), middle floor, and first floor. For selected floors, the loudest and quietest exposed façades per dwelling, plus the nearest façade point to the residential geocode, were extracted. Exposure was also assigned from 10â¯×â¯10â¯m noise maps, using "buffers" from 50 to 500â¯m derived from the maps, and by aggregating the maps to larger areas. Associations between road traffic and railway noise and MI mortality were evaluated by multi-pollutant Cox regression models, adjusted for aircraft noise, NO2 and socio-demographic confounders, following individuals from 2000 to 2008. Bias was calculated to express differences compared to the reference. RESULTS: Hazard ratios (HRs) for the best match residential floor were 1.05 (1.02-1.07) and 1.03 (1.01-1.05) per IQR (11.3 and 15.0â¯dB) for road traffic and railway noise, respectively. In most situations, comparing the alternative exposure definitions to this reference resulted in attenuated HRs. For example, assuming everyone resided on the middle or everyone on first floor introduced little bias (%Bias in excess risk: -1.9 to 4.4 road traffic and -4.4 to 10.7 railway noise). Using the noise grids generated a bias of approximately -26% for both sources. Averaging the maps at a coarser spatial scale led to bias from -19.4 to -105.1% for road traffic and 17.6 to -34.3% for railway noise and inflated the confidence intervals such that some HRs were no longer statistically significant. CONCLUSION: Changes in spatial scale introduced more bias than changes in residential floor. Use of noise maps to represent residential exposure may underestimate noise-induced health effects, in particular for small-scale heterogeneously distributed road traffic noise in urban settings.