Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Chembiochem ; 24(8): e202200749, 2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-36779388

RESUMO

The mitochondrion, an essential organelle involved in cellular respiration, energy production, and cell death, is the main cellular source of reactive oxygen species (ROS), including superoxide. Mitochondrial diseases resulting from uncontrolled/excess ROS generation are an emerging public health concern and there is current interest in specific mitochondriotropic probes to get information on in-situ ROS production. As such, nitrones vectorized by the triphenylphosphonium (TPP) cation have recently drawn attention despite reported cytotoxicity. Herein, we describe the synthesis of 13 low-toxic derivatives of N-benzylidene-1-diethoxyphosphoryl-1-methylethylamine N-oxide (PPN) alkyl chain-grafted to a pyridinium, triethylammonium or berberinium lipophilic cation. These nitrones showed in-vitro superoxide quenching activity and EPR/spin-trapping efficiency towards biologically relevant free radicals, including superoxide and hydroxyl radicals. Their mitochondrial penetration was confirmed by 31 P NMR spectroscopy, and their anti-apoptotic properties were assessed in Schwann cells treated with hydrogen peroxide. Two pyridinium-substituted PPNs were identified as potentially better alternatives to TPP nitrones conjugates for studying mitochondrial oxidative damage.


Assuntos
Mitocôndrias , Superóxidos , Superóxidos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Mitocôndrias/metabolismo , Apoptose , Cátions/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica/métodos
2.
Molecules ; 27(14)2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35889385

RESUMO

In order to discover new 31P NMR markers for probing subtle pH changes (<0.2 pH unit) in biological environments, fifteen new conformationally constrained or sterically hindered α-aminophosphonates derived from diethyl(2-methylpyrrolidin-2-yl)phosphonate were synthesized and tested for their pH reporting and cytotoxic properties in vitro. All compounds showed near-neutral pKas (ranging 6.28−6.97), chemical shifts not overlapping those of phosphorus metabolites, and spectroscopic sensitivities (i.e., chemical shifts variation Δδab between the acidic and basic forms) ranging from 9.2−10.7 ppm, being fourfold larger than conventional endogenous markers such as inorganic phosphate. X-ray crystallographic studies combined with predictive empirical relationships and ab initio calculations addressed the inductive and stereochemical effects of substituents linked to the protonated amine function. Satisfactory correlations were established between pKas and both the 2D structure and pyramidalization at phosphorus, showing that steric crowding around the phosphorus is crucial for modulating Δδab. Finally, the hit 31P NMR pH probe 1b bearing an unsubstituted 1,3,2-dioxaphosphorinane ring, which is moderately lipophilic, nontoxic on A549 and NHLF cells, and showing pKa = 6.45 with Δδab = 10.64 ppm, allowed the first clear-cut evidence of trans-sarcolemmal pH gradients in normoxic Dictyostelium discoideum cells with an accuracy of <0.05 pH units.


Assuntos
Dictyostelium , Organofosfonatos , Concentração de Íons de Hidrogênio , Fósforo , Força Próton-Motriz
3.
J Physiol ; 597(2): 611-629, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30397919

RESUMO

KEY POINTS: Chronic mountain sickness (CMS) is a maladaptation syndrome encountered at high altitude (HA) characterised by severe hypoxaemia that carries a higher risk of stroke and migraine and is associated with increased morbidity and mortality. We examined if exaggerated oxidative-inflammatory-nitrosative stress (OXINOS) and corresponding decrease in vascular nitric oxide bioavailability in patients with CMS (CMS+) is associated with impaired cerebrovascular function and adverse neurological outcome. Systemic OXINOS was markedly elevated in CMS+ compared to healthy HA (CMS-) and low-altitude controls. OXINOS was associated with blunted cerebral perfusion and vasoreactivity to hypercapnia, impaired cognition and, in CMS+, symptoms of depression. These findings are the first to suggest that a physiological continuum exists for hypoxaemia-induced systemic OXINOS in HA dwellers that when excessive is associated with accelerated cognitive decline and depression, helping identify those in need of more specialist neurological assessment and targeted support. ABSTRACT: Chronic mountain sickness (CMS) is a maladaptation syndrome encountered at high altitude (HA) characterised by severe hypoxaemia that carries a higher risk of stroke and migraine and is associated with increased morbidity and mortality. The present cross-sectional study examined to what extent exaggerated systemic oxidative-inflammatory-nitrosative stress (OXINOS), defined by an increase in free radical formation and corresponding decrease in vascular nitric oxide (NO) bioavailability, is associated with impaired cerebrovascular function, accelerated cognitive decline and depression in CMS. Venous blood was obtained from healthy male lowlanders (80 m, n = 17), and age- and gender-matched HA dwellers born and bred in La Paz, Bolivia (3600 m) with (CMS+, n = 23) and without (CMS-, n = 14) CMS. We sampled blood for oxidative (electron paramagnetic resonance spectroscopy, HPLC), nitrosative (ozone-based chemiluminescence) and inflammatory (fluorescence) biomarkers. We employed transcranial Doppler ultrasound to measure cerebral blood flow (CBF) and reactivity. We utilised psychometric tests and validated questionnaires to assess cognition and depression. Highlanders exhibited elevated systemic OXINOS (P < 0.05 vs. lowlanders) that was especially exaggerated in the more hypoxaemic CMS+ patients (P < 0.05 vs. CMS-). OXINOS was associated with blunted cerebral perfusion and vasoreactivity to hypercapnia, impaired cognition and, in CMS+, symptoms of depression. Collectively, these findings are the first to suggest that a physiological continuum exists for hypoxaemia-induced OXINOS in HA dwellers that when excessive is associated with accelerated cognitive decline and depression, helping identify those in need of specialist neurological assessment and support.


Assuntos
Doença da Altitude , Disfunção Cognitiva , Depressão , Estresse Nitrosativo , Estresse Oxidativo , Adulto , Idoso , Doença da Altitude/sangue , Doença da Altitude/metabolismo , Doença da Altitude/fisiopatologia , Circulação Cerebrovascular , Doença Crônica , Disfunção Cognitiva/sangue , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/fisiopatologia , Depressão/sangue , Depressão/metabolismo , Depressão/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos
4.
Chembiochem ; 18(3): 300-315, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-27885767

RESUMO

There is increasing interest in measuring pH in biological samples by using nitroxides with pH-dependent electron paramagnetic resonance (EPR) spectra. Aiming to improve the spectral sensitivity (ΔaX ) of these probes (i.e., the difference between the EPR hyperfine splitting (hfs) in their protonated and unprotonated forms), we characterized a series of novel linear α-carboxy, α'-diethoxyphosphoryl nitroxides constructed on an amino acid core and featuring an (α or α')-C-H bond. In buffer, the three main hfs (aN , aH , and aP ) of their EPR spectra vary reversibly with pH and, from aP or aH titration curves, a two- to fourfold increase in sensitivity was achieved compared to reference imidazoline or imidazolidine nitroxides. The crystallized carboxylate 10 b (pKa ≈3.6), which demonstrated low cytotoxicity and good resistance to bioreduction, was applied to probe stomach acidity in rats. The results pave the way to a novel generation of highly sensitive EPR pH markers.


Assuntos
Aminoácidos/química , Espectroscopia de Ressonância de Spin Eletrônica , Óxidos de Nitrogênio/química , Organofosfonatos/química , Células A549 , Animais , Sobrevivência Celular/efeitos dos fármacos , Cristalografia por Raios X , Ácido Gástrico/química , Mucosa Gástrica/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Espectroscopia de Ressonância Magnética , Masculino , Simulação de Dinâmica Molecular , Óxidos de Nitrogênio/toxicidade , Organofosfonatos/síntese química , Fosforilação , Ratos , Ratos Sprague-Dawley
5.
J Transl Med ; 12: 38, 2014 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-24507657

RESUMO

BACKGROUND: Although reperfusion injury has been shown to be responsible for cardiomyocytes death after an acute myocardial infarction, there is currently no drug on the market that reduces this type of injury. TRO40303 is a new cardioprotective compound that was shown to inhibit the opening of the mitochondrial permeability transition pore and reduce infarct size after ischemia-reperfusion in a rat model of cardiac ischemia-reperfusion injury. METHODS: In the rat model, the therapeutic window and the dose effect relationship were investigated in order to select the proper dose and design for clinical investigations. To evaluate post-ischemic functional recovery, TRO40303 was tested in a model of isolated rat heart. Additionally, TRO40303 was investigated in a Phase I randomized, double-blind, placebo controlled study to assess the safety, tolerability and pharmacokinetics of single intravenous ascending doses of the compound (0.5 to 13 mg/kg) in 72 healthy male, post-menopausal and hysterectomized female subjects at flow rates from 0.04 to 35 mL/min (EudraCT number: 2010-021453-39). This work was supported in part by the French Agence Nationale de la Recherche. RESULTS: In the vivo model, TRO40303 reduced infarct size by 40% at 1 mg/kg and by 50% at 3 and 10 mg/kg given by intravenous bolus and was only active when administered before reperfusion. Additionally, TRO40303 provided functional recovery and reduced oxidative stress in the isolated rat heart model.These results, together with pharmacokinetic based allometry to human and non-clinical toxicology data, were used to design the Phase I trial. All the tested doses and flow rates were well tolerated clinically. There were no serious adverse events reported. No relevant changes in vital signs, electrocardiogram parameters, laboratory tests or physical examinations were observed at any time in any dose group. Pharmacokinetics was linear up to 6 mg/kg and slightly ~1.5-fold, hyper-proportional from 6 to 13 mg/kg. CONCLUSIONS: These data demonstrated that TRO40303 can be safely administered by the intravenous route in humans at doses expected to be pharmacologically active. These results allowed evaluating the expected active dose in human at 6 mg/kg, used in a Phase II proof-of-concept study currently ongoing.


Assuntos
Infarto do Miocárdio/tratamento farmacológico , Oximas/efeitos adversos , Oximas/uso terapêutico , Secoesteroides/efeitos adversos , Secoesteroides/uso terapêutico , Animais , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Feminino , Voluntários Saudáveis , Humanos , Técnicas In Vitro , Lipossomos , Masculino , Infarto do Miocárdio/sangue , Infarto do Miocárdio/complicações , Infarto do Miocárdio/patologia , Traumatismo por Reperfusão Miocárdica/sangue , Traumatismo por Reperfusão Miocárdica/complicações , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/patologia , Estresse Oxidativo/efeitos dos fármacos , Oximas/sangue , Oximas/farmacologia , Ratos , Secoesteroides/sangue , Secoesteroides/farmacologia , Sus scrofa , Pesquisa Translacional Biomédica
6.
Phytother Res ; 28(10): 1423-46, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24831562

RESUMO

Many studies have shown that a large number of terpenoids and aromatic compounds contained in essential oils have significant anticancer activities, both on cell lines and on tumors in animals. The activity of these constituents is related to the activation of cell death (apoptosis) induced by the caspases proteins in cancer cells, with minor modifications of healthy cells. Many phenomena seem to occur, among which are as follows: overexpression and regulation of liver detoxification enzymes, changes in the membrane potential of cancer cells and mitochondria, production of free radicals in cancer cells, inhibition of angiogenesis, and modification of tumor-inducing genes. These active essential oil constituents appear to act synergistically with conventional chemotherapy and radiotherapy, and some clinical studies in humans are beginning to be realized. In this review, we discuss about the antitumoral activity of 13 essential oil components selected among the most studied in the literature, with a focus on their possible mode of action. We also report current data on the anticancer properties of several total essential oils.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Óleos Voláteis/farmacologia , Óleos de Plantas/farmacologia , Animais , Apoptose/efeitos dos fármacos , Caspases/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sinergismo Farmacológico , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Potenciais da Membrana/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Neoplasias/patologia
7.
Redox Biol ; 56: 102450, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36030628

RESUMO

Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal dominant disorder characterized by progressive muscle weakness. Adenine nucleotide translocator 1 (ANT1), the only 4q35 gene involved in mitochondrial function, is strongly expressed in FSHD skeletal muscle biopsies. However, its role in FSHD is unclear. In this study, we evaluated ANT1 overexpression effects in primary myoblasts from healthy controls and during Xenopus laevis organogenesis. We also compared ANT1 overexpression effects with the phenotype of FSHD muscle cells and biopsies. Here, we report that the ANT1 overexpression-induced phenotype presents some similarities with FSHD muscle cells and biopsies. ANT1-overexpressing muscle cells showed disorganized morphology, altered cytoskeletal arrangement, enhanced mitochondrial respiration/glycolysis, ROS production, oxidative stress, mitochondrial fragmentation and ultrastructure alteration, as observed in FSHD muscle cells. ANT1 overexpression in Xenopus laevis embryos affected skeletal muscle development, impaired skeletal muscle, altered mitochondrial ultrastructure and led to oxidative stress as observed in FSHD muscle biopsies. Moreover, ANT1 overexpression in X. laevis embryos affected heart structure and mitochondrial ultrastructure leading to cardiac arrhythmia, as described in some patients with FSHD. Overall our data suggest that ANT1 could contribute to mitochondria dysfunction and oxidative stress in FSHD muscle cells by modifying their bioenergetic profile associated with ROS production. Such interplay between energy metabolism and ROS production in FSHD will be of significant interest for future prospects.


Assuntos
Distrofia Muscular Facioescapuloumeral , Translocador 1 do Nucleotídeo Adenina/genética , Translocador 1 do Nucleotídeo Adenina/metabolismo , Humanos , Desenvolvimento Muscular , Músculo Esquelético/metabolismo , Distrofia Muscular Facioescapuloumeral/genética , Distrofia Muscular Facioescapuloumeral/patologia , Mioblastos/metabolismo , Espécies Reativas de Oxigênio/metabolismo
8.
Free Radic Biol Med ; 184: 99-113, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35398201

RESUMO

Chronic mountain sickness (CMS) is a high-altitude (HA) maladaptation syndrome characterised by elevated systemic oxidative-nitrosative stress (OXNOS) due to a free radical-mediated reduction in vascular nitric oxide (NO) bioavailability. To better define underlying mechanisms and vascular consequences, this study compared healthy male lowlanders (80 m, n = 10) against age/sex-matched highlanders born and bred in La Paz, Bolivia (3600 m) with (CMS+, n = 10) and without (CMS-, n = 10) CMS. Cephalic venous blood was assayed using electron paramagnetic resonance spectroscopy and reductive ozone-based chemiluminescence. Nutritional intake was assessed via dietary recall. Systemic vascular function and structure were assessed via flow-mediated dilatation, aortic pulse wave velocity and carotid intima-media thickness using duplex ultrasound and applanation tonometry. Basal systemic OXNOS was permanently elevated in highlanders (P = <0.001 vs. lowlanders) and further exaggerated in CMS+, reflected by increased hydroxyl radical spin adduct formation (P = <0.001 vs. CMS-) subsequent to liberation of free 'catalytic' iron consistent with a Fenton and/or nucleophilic addition mechanism(s). This was accompanied by elevated global protein carbonylation (P = 0.046 vs. CMS-) and corresponding reduction in plasma nitrite (P = <0.001 vs. lowlanders). Dietary intake of vitamins C and E, carotene, magnesium and retinol were lower in highlanders and especially deficient in CMS + due to reduced consumption of fruit and vegetables (P = <0.001 to 0.028 vs. lowlanders/CMS-). Systemic vascular function and structure were also impaired in highlanders (P = <0.001 to 0.040 vs. lowlanders) with more marked dysfunction observed in CMS+ (P = 0.035 to 0.043 vs. CMS-) in direct proportion to systemic OXNOS (r = -0.692 to 0.595, P = <0.001 to 0.045). Collectively, these findings suggest that lifelong exposure to iron-catalysed systemic OXNOS, compounded by a dietary deficiency of antioxidant micronutrients, likely contributes to the systemic vascular complications and increased morbidity/mortality in CMS+. TRIAL REGISTRY: ClinicalTrials.gov; No: NCT01182792; URL: www.clinicaltrials.gov.


Assuntos
Doença da Altitude , Altitude , Doença da Altitude/metabolismo , Espessura Intima-Media Carotídea , Doença Crônica , Espectroscopia de Ressonância de Spin Eletrônica , Radicais Livres , Humanos , Ferro , Masculino , Análise de Onda de Pulso
9.
Exp Physiol ; 96(11): 1196-207, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21841038

RESUMO

The present study examined whether dynamic cerebral autoregulation and blood-brain barrier function would become compromised as a result of exercise-induced oxidative-nitrosative stress. Eight healthy men were examined at rest and after an incremental bout of semi-recumbent cycling exercise to exhaustion. Changes in a dynamic cerebral autoregulation index were determined during recovery from continuous recordings of blood flow velocity in the middle cerebral artery (MCAv) and mean arterial pressure during transiently induced hypotension. Electron paramagnetic resonance spectroscopy and ozone-based chemiluminescence were employed for direct detection of spin-trapped free radicals and nitric oxide metabolites in venous blood. Neuron-specific enolase, S100ß and 3-nitrotyrosine were determined by ELISA. While exercise did not alter MCAv, it caused a mild reduction in the autoregulation index (from 6.9 ± 0.6 to 5.5 ± 0.9 a.u., P < 0.05) that correlated directly against the exercise-induced increase in the ascorbate radical, 5-(diethoxyphosphoryl)-5-methyl-1-pyrroline N-oxide and N-tert-butyl-α-phenylnitrone adducts, 3-nitrotyrosine and S100ß (r = -0.66 to -0.76, P < 0.05). In contrast, no changes in neuron-specific enolase were observed. In conclusion, our findings suggest that intense exercise has the potential to increase blood-brain barrier permeability without causing structural brain damage subsequent to a free radical-mediated impairment in dynamic cerebral autoregulation.


Assuntos
Barreira Hematoencefálica/fisiologia , Circulação Cerebrovascular/fisiologia , Exercício Físico/fisiologia , Homeostase/fisiologia , Adulto , Velocidade do Fluxo Sanguíneo , Espectroscopia de Ressonância de Spin Eletrônica , Radicais Livres/metabolismo , Humanos , Masculino , Artéria Cerebral Média/fisiologia , Fatores de Crescimento Neural/metabolismo , Óxido Nítrico/sangue , Estresse Oxidativo/fisiologia , Permeabilidade , Fosfopiruvato Hidratase/metabolismo , Pirróis , Subunidade beta da Proteína Ligante de Cálcio S100 , Proteínas S100/metabolismo , Tirosina/análogos & derivados , Tirosina/sangue
10.
Bioorg Med Chem ; 19(7): 2218-30, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21420303

RESUMO

The cis/trans diastereoisomeric composition of hydroxyl radical adducts to chiral cyclic nitrones can be used to approach mechanisms of free radical formation in biological systems. Such determination is greatly simplified when both diastereoisomers have ESR spectra with at least two non-overlapping lines. To achieve this prerequisite, a series of DEPMPO-derived spin traps bearing one unsubstituted or alkyl-substituted 2-oxo-1,3,2-dioxaphosphorinane ring were synthesized and their structures were confirmed by X-ray diffraction, (1)H, (13)C and (31)P NMR. These CyDEPMPOs nitrones showed variable lipophilicities and LD(50) values on murine fibroblasts compatible with a safe use in biological spin trapping. All CyDEPMPOs formed persistent spin adducts with a series of free radicals, including superoxide and hydroxyl (i.e., CyDEPMPOs-OH) and the in vitro half-life times of these two latter were at least as extended as those of parent DEPMPO. Using four methods of CyDEPMPOs-OH formation, the cis-CyDEPMPOs-OH percentage was found significantly varied with substitution on the P-containing ring and, more interestingly, with the generating system.


Assuntos
Óxidos N-Cíclicos/química , Radical Hidroxila/química , Detecção de Spin/métodos , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Cinética , Conformação Molecular , Estereoisomerismo , Superóxidos/química , Difração de Raios X
11.
Methods Mol Biol ; 2275: 65-85, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34118032

RESUMO

The mitochondrion can be considered as the metabolic powerhouse of the cell, having a key impact on energy production, cell respiration, and intrinsic cell death. Mitochondria are also the main source of endogenous reactive oxygen species , including free radicals (FR), which are physiologically involved in signaling pathways but may promote cell damage when unregulated or excessively formed in inappropriate locations. A variety of chronic pathologies have been associated with FR-induced mitochondrial dysfunctions , such as cancer, age-related neurodegenerative diseases, and metabolic syndrome.In recent years drug design based on specific mitochondria-targeted antioxidants has become a very attractive therapeutic strategy and, among target compounds, nitrones have received growing attention because of their specific affinity toward FR. Here, we describe protocols dealing with the preparation, mitochondria permeation assessment, electron paramagnetic resonance (EPR) spin trapping setting, and antiapoptotic properties evaluation of a series of new linear nitrones vectorized by a triphenylphosphonium cation and labeled with a diethoxyphosphoryl moiety as 31P nuclear magnetic resonance (NMR) reporter with antioxidant property.


Assuntos
Antioxidantes/síntese química , Mitocôndrias/química , Óxidos de Nitrogênio/química , Compostos Organofosforados/síntese química , Células 3T3 , Animais , Antioxidantes/química , Antioxidantes/farmacocinética , Espectroscopia de Ressonância de Spin Eletrônica , Humanos , Espectroscopia de Ressonância Magnética , Masculino , Camundongos , Estrutura Molecular , Compostos Organofosforados/química , Compostos Organofosforados/farmacocinética , Isótopos de Fósforo/química , Fosforilação , Ratos , Detecção de Spin
12.
Food Chem ; 350: 129222, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-33607411

RESUMO

The reaction pathways were investigated by which a fungoid chitosan (CsG) may protect against photooxidative decay of model solutions and a sulphite-free white wine. Samples containing CsG were dark incubated for 2 days before exposure to fluorescent lighting for up to 21 days in the presence of wine like (+)-catechin and/or iron doses. In both systems CsG at winemaking doses significantly reduced the photoproduction of acetaldehyde and, to a better extent, glyoxylic acid, two key reactive aldehydes implicated in wine oxidative spoilage. After 21 days, CsG was two-fold more effective than sulphur dioxide in preventing glyoxylic acid formation and minimizing the browning of white wine. Among the antioxidant mechanisms involved in CsG protective effect, iron chelation, and hydrogen peroxide quenching were demonstrated. Besides, the previously unreported tartrate displacement from the [iron(III)-tartrate] complex was revealed as an additional inhibitory mechanism of CsG under photo-Fenton oxidation conditions.


Assuntos
Aldeídos/química , Quitosana/química , Processos Fotoquímicos , Vinho/análise , Antioxidantes/química , Catequina/química , Glioxilatos/química , Oxirredução , Dióxido de Enxofre/química , Tartaratos/química
13.
Antioxidants (Basel) ; 10(2)2021 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-33573143

RESUMO

Tamanu oil from Calophyllum inophyllum L. has long been used in traditional medicine. Ethanol extraction was found the best strategy for recovering bioactive compounds from the resin part of Tamanu oil, yielding two neutral and acidic resins fractions with high phenolics, flavonoids and pyranocoumarins concentrations. A further cascade of LPLC/HPLC separations of neutral and acidic resin fractions allowed identifying fifteen metabolites, and among them, calanolide D and 12-oxocalanolide A (both in neutral fraction) were first identified from a natural source. All these extracts, subfractions and isolated metabolites demonstrated increased free radical scavenging, antioxidant, anti-inflammatory, antimicrobial and antimycobacterial activity compared to Tamanu oil and its de-resinated lipid phase. Overall, these results could promote resinous ethanol-soluble Tamanu oil extracts as a useful multifaceted and renewable medicinal resource.

14.
J Biol Chem ; 284(45): 31174-80, 2009 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-19740740

RESUMO

Photoinhibition and production of reactive oxygen species were studied in tobacco plants overexpressing the plastid terminal oxidase (PTOX). In high light, these plants was more susceptible to photoinhibition than wild-type plants. Also oxygen-evolving activity of isolated thylakoid membranes from the PTOX-overexpressing plants was more strongly inhibited in high light than in thylakoids from wild-type plants. In contrast in low light, in the PTOX overexpressor, the thylakoids were protected against photoinhibition while in wild type they were significantly damaged. The production of superoxide and hydroxyl radicals was shown by EPR spin-trapping techniques in the different samples. Superoxide and hydroxyl radical production was stimulated in the overexpressor. Two-thirds of the superoxide production was maintained in the presence of DNP-INT, an inhibitor of the cytochrome b(6)f complex. No increase of the SOD content was observed in the overexpressor compared with the wild type. We propose that superoxide is produced by PTOX in a side reaction and that PTOX can only act as a safety valve under stress conditions when the generated superoxide is detoxified by an efficient antioxidant system.


Assuntos
Proteínas de Arabidopsis/genética , Expressão Gênica , Nicotiana/metabolismo , Estresse Oxidativo , Oxirredutases/genética , Proteínas de Arabidopsis/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Expressão Gênica/efeitos da radiação , Luz , Estresse Oxidativo/efeitos da radiação , Oxirredutases/metabolismo , Superóxidos/metabolismo , Tilacoides/genética , Tilacoides/metabolismo , Tilacoides/efeitos da radiação , Nicotiana/química , Nicotiana/genética , Nicotiana/efeitos da radiação
15.
Mol Cell Biol ; 27(6): 2215-28, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17242209

RESUMO

Tumor protein 53-induced nuclear protein 1 (TP53INP1) is an antiproliferative and proapoptotic protein involved in cell stress response. To address its physiological roles in colorectal cancer and colitis, we generated and tested the susceptibility of Trp53inp1-deficient mice to the development of colorectal tumors induced by injection of the carcinogen azoxymethane followed by dextran sulfate sodium (DSS)-induced chronic colitis. Trp53inp1-deficient mice showed an increased incidence and multiplicity of tumors compared to those of wild-type (WT) mice. Furthermore, acute colitis induced by DSS treatment was more severe in Trp53inp1-deficient mice than in WT mice. Treatment with the antioxidant N-acetylcysteine prevented colitis and colitis-associated tumorigenesis more efficiently in WT mice than in Trp53inp1-deficient mice, suggesting a higher oxidative load in the latter. Consistently, we demonstrated by electron spin resonance and spin trapping that colons derived from deficient mice produced more free radicals than those of the WT during colitis and that the basal blood level of the antioxidant ascorbate was decreased in Trp53inp1-deficient mice. Collectively, these results indicate that the oxidative load is higher in Trp53inp1-deficient mice than in WT mice, generating a more-severe DSS-induced colitis, which favors development of colorectal tumors in Trp53inp1-deficient mice. Therefore, TP53INP1 is a potential target for the prevention of colorectal cancer in patients with inflammatory bowel disease.


Assuntos
Proteínas de Transporte/metabolismo , Colite/metabolismo , Colite/patologia , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Proteínas Nucleares/metabolismo , Doença Aguda , Animais , Proteínas de Transporte/genética , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Doença Crônica , Colite/complicações , Colite/genética , Neoplasias do Colo/complicações , Neoplasias do Colo/genética , Sulfato de Dextrana/farmacologia , Peroxidação de Lipídeos , Camundongos , Camundongos Knockout , Mutação/genética , NF-kappa B/metabolismo , Proteínas Nucleares/genética , Estresse Oxidativo , Espécies Reativas de Oxigênio
16.
Phys Chem Chem Phys ; 12(27): 7603-11, 2010 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-20502834

RESUMO

Light-induced heterogeneous reactions between gas-phase ozone and veratraldehyde adsorbed on silica particles were performed. At an ozone mixing ratio of 250 ppb, the loss of veratraldehyde largely increased from 1.81 x 10(-6) s(-1) in the dark to 2.54 x 10(-5) s(-1) upon exposure to simulated sunlight (lambda > 300 nm). The observed rates of degradation exhibited linear dependence with the ozone in the dark ozonolysis experiments which change in the non-linear Langmuir-Hinshelwood dependence in the experiments with simultaneous ozone and light exposure of the coated particles. When the coated silica particles were exposed only to simulated sunlight in absence of ozone the loss of veratraldehyde was about three times higher i.e. 5.97 x 10(-6) s(-1) in comparison to the ozonolysis experiment under dark conditions at 250 ppb ozone mixing ratio, 1.81 x 10(-6) s(-1).These results clearly show that the most important loss of veratraldehyde occurs under simultaneous ozone and light exposure of the coated silica particles. The main identified product in the heterogeneous reactions between gaseous ozone and adsorbed veratraldehyde under dark conditions and in presence of light was veratric acid.Carbon yields of veratric acid were calculated and the obtained results indicated that at low ozone mixing ratio (250 ppb) the carbon yield obtained under dark conditions is 70% whereas the carbon yield obtained in the experiments with simultaneous ozone and light exposure of the coated particles is 40%. In both cases the carbon yield of veratric acid exponentially decayed leading to the plateau ( approximately 35% of carbon yield) at an ozone mixing ratio of 6 ppm. Two reaction products i.e. 3-hydroxy-4-methoxybenzoic acid and 4-hydroxy-3-methoxybenzoic acid were identified (confirmed with the standards) only in the experiments performed under simultaneous ozonolysis and light irradiation of the particles.

17.
Food Chem ; 285: 67-76, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-30797377

RESUMO

The efficacy against oxidative degradation in model and sulphite-free white wines of two commercial, insoluble chitosans (one being approved for winemaking) were investigated by electron paramagnetic resonance (EPR). Both compounds at various doses significantly inhibited the formation of α-(4-pyridyl-1-oxide)-N-t-butylnitrone (4-POBN)-1-hydroxyethyl adducts under normal wine storage conditions. Pre-incubation with 2 g/L chitosan followed by filtration had a better effect than adding 50 mg/L sulphur dioxide to the experimental Chardonnay wine on the release of 4-POBN adducts after 6 days of incubation with 100 µM iron(II). In a relevant photooxidative system acetaldehyde formation was significantly reduced after 6 days of incubation. Parallel EPR tests were performed to assess the importance of metal chelation (iron and copper) versus direct scavenging of hydroxyl radicals on the effect of chitosan. The present data support the potentiality of using biocompatible chitosan as a healthier complement and/or alternative to sulphur dioxide against white wine oxidative spoilage.


Assuntos
Antioxidantes/química , Quitosana/química , Sulfitos/química , Quelantes/química , Espectroscopia de Ressonância de Spin Eletrônica , Compostos Ferrosos/química , Radical Hidroxila/química , Piridinas/química , Marcadores de Spin , Vinho/análise
18.
Anal Biochem ; 380(2): 184-94, 2008 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-18585363

RESUMO

The 31P nuclear magnetic resonance (NMR) characteristics, toxicity, and cellular penetration of five linear or cyclic alpha-aminophosphonate highly sensitive pH probes were investigated in Dictyostelium discoideum cells and isolated rat hearts and were compared with three phosphonic acid derivatives. The line width broadening at pH approximately pK(a), which was satisfactorily modelized for all compounds, was significantly limited in biological milieu for the new markers, affording a four- to sixfold better accuracy in pH determination. Cellular uptake or washout of nontoxic concentrations (< 15 mM) of alpha-aminophosphonates occurred by rapid passive permeation, whereas standard probes required a much slower fluid-phase pinocytosis and transport processes that could ultimately lead to trapping. Using mild concentrations (< 4 mM) three alpha-aminophosphonates having 6 < pK(a) < 7 allowed an easy and simultaneous 31P NMR determination of cytosolic, acidic, and extracellular compartments in anoxic-reoxygenated or starving D. discoideum.


Assuntos
Aminas/química , Ressonância Magnética Nuclear Biomolecular/métodos , Organofosfonatos/química , Aminas/farmacocinética , Aminas/toxicidade , Animais , Células Cultivadas , Dictyostelium/química , Dictyostelium/efeitos dos fármacos , Dictyostelium/metabolismo , Coração/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Miocárdio/química , Miocárdio/metabolismo , Neuroglia/química , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Organofosfonatos/farmacocinética , Organofosfonatos/toxicidade , Permeabilidade , Isótopos de Fósforo/análise , Ratos , Frações Subcelulares/química , Frações Subcelulares/metabolismo
20.
Talanta ; 170: 119-127, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28501147

RESUMO

Myeloperoxidase (MPO) is a key enzyme derived from leukocytes which is associated with the initiation and progression of many inflammatory diseases. Increased levels of MPO may contribute to cellular dysfunction and tissues injury by producing highly reactive oxidants such as hypochlorous acid (HOCl). Myeloperoxidase-generated HOCl is therefore considered as a relevant biomarker of oxidative stress-related damage and its quantitation is of great importance to the study of disease progression. In this context, the current study describes a rapid, sensitive and homogeneous fluorescence-based method for detecting the MPO chlorination activity in biological samples. This assay utilizes 7-hydroxy-2-oxo-2H-chromene-8-carbaldehyde oxime as a selective probe for HOCl detection, and is adapted to 96-well microplates to allow high-throughput quantitation of active MPO. The ability of the method to monitor HOCl release was further investigated in hyperglycemic streptozotocin-treated diabetic rats. The data proved that the present assay has a reliable performance when quantitating the active MPO in the plasma of diabetic animals, a feature of inflammatory disease found concomitant with an elevation of protein carbonyls levels and lipid peroxidation and which was negatively correlated with the ratio of reduced-to-oxidized glutathione.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Ensaios Enzimáticos/métodos , Ácido Hipocloroso/metabolismo , Estresse Oxidativo , Peroxidase/metabolismo , Animais , Células HL-60 , Halogenação , Humanos , Masculino , Peroxidase/sangue , Ratos , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa