Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Syst Biol ; 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38577768

RESUMO

Increased sampling of genomes and populations across closely related species has revealed that levels of genetic exchange during and after speciation are higher than previously thought. One obvious manifestation of such exchange is strong cytonuclear discordance, where the divergence in mitochondrial DNA (mtDNA) differs from that for nuclear genes more (or less) than expected from differences between mtDNA and nuclear DNA (nDNA) in population size and mutation rate. Given genome-scale datasets and coalescent modelling, we can now confidently identify cases of strong discordance and test specifically for historical or recent introgression as the cause. Using population sampling, combining exon capture data from historical museum specimens and recently collected tissues we showcase how genomic tools can resolve complex evolutionary histories in the brachyotis group of rock-wallabies (Petrogale). In particular, applying population and phylogenomic approaches we can assess the role of demographic processes in driving complex evolutionary patterns and assess a role of ancient introgression and hybridisation. We find that described species are well supported as monophyletic taxa for nDNA genes, but not for mtDNA, with cytonuclear discordance involving at least four operational taxonomic units (OTUs) across four species which diverged 183-278 kya. ABC modelling of nDNA gene trees supports introgression during or after speciation for some taxon pairs with cytonuclear discordance. Given substantial differences in body size between the species involved, this evidence for gene flow is surprising. Heterogenous patterns of introgression were identified but do not appear to be associated with chromosome differences between species. These and previous results suggest that dynamic past climates across the monsoonal tropics could have promoted reticulation among related species.

2.
BMC Evol Biol ; 11: 176, 2011 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-21693014

RESUMO

BACKGROUND: Ecosystem engineers facilitate habitat formation and enhance biodiversity, but when they become invasive, they present a critical threat to native communities because they can drastically alter the receiving habitat. Management of such species thus needs to be a priority, but the poorly resolved taxonomy of many ecosystem engineers represents a major obstacle to correctly identifying them as being either native or introduced. We address this dilemma by studying the sea squirt Pyura stolonifera, an important ecosystem engineer that dominates coastal communities particularly in the southern hemisphere. Using DNA sequence data from four independently evolving loci, we aimed to determine levels of cryptic diversity, the invasive or native status of each regional population, and the most appropriate sampling design for identifying the geographic ranges of each evolutionary unit. RESULTS: Extensive sampling in Africa, Australasia and South America revealed the existence of "nested" levels of cryptic diversity, in which at least five distinct species can be further subdivided into smaller-scale genetic lineages. The ranges of several evolutionary units are limited by well-documented biogeographic disjunctions. Evidence for both cryptic native diversity and the existence of invasive populations allows us to considerably refine our view of the native versus introduced status of the evolutionary units within Pyura stolonifera in the different coastal communities they dominate. CONCLUSIONS: This study illustrates the degree of taxonomic complexity that can exist within widespread species for which there is little taxonomic expertise, and it highlights the challenges involved in distinguishing between indigenous and introduced populations. The fact that multiple genetic lineages can be native to a single geographic region indicates that it is imperative to obtain samples from as many different habitat types and biotic zones as possible when attempting to identify the source region of a putative invader. "Nested" cryptic diversity, and the difficulties in correctly identifying invasive species that arise from it, represent a major challenge for managing biodiversity.


Assuntos
Biodiversidade , Ecossistema , Espécies Introduzidas , Biologia Marinha , Urocordados/classificação , Animais , Evolução Biológica , Dados de Sequência Molecular , Filogenia , Urocordados/genética
3.
Mol Ecol ; 19(10): 2011-24, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20406383

RESUMO

The life-history strategies of some species make them strong candidates for rapid exploitation of novel habitat under new climate regimes. Some early-responding species may be considered invasive, and negatively impact on 'naïve' ecosystems. The barrens-forming sea urchin Centrostephanus rodgersii is one such species, having a high dispersal capability and a high-latitude range margin limited only by a developmental temperature threshold. Within this species' range in eastern Australian waters, sea temperatures have increased at greater than double the global average rate. The coinciding poleward range extension of C. rodgersii has caused major ecological changes, threatening reef biodiversity and fisheries productivity. We investigated microsatellite diversity and population structure associated with range expansion by this species. Generalized linear model analyses revealed no reduction in genetic diversity in the newly colonized region. A 'seascape genetics' analysis of genetic distances found no spatial genetic structure associated with the range extension. The distinctive genetic characteristic of the extension zone populations was reduced population-specific F(ST), consistent with very rapid population expansion. Demographic and genetic simulations support our inference of high connectivity between pre- and post-extension zones. Thus, the range shift appears to be a poleward extension of the highly-connected rangewide population of C. rodgersii. This is consistent with advection of larvae by the intensified warm water East Australian current, which has also increased Tasmanian Sea temperatures above the species' lower developmental threshold. Thus, ocean circulation changes have improved the climatic suitability of novel habitat for C. rodgersii and provided the supply of recruits necessary for colonization.


Assuntos
Mudança Climática , Ecossistema , Variação Genética , Genética Populacional , Ouriços-do-Mar/genética , Animais , Austrália , Teorema de Bayes , Simulação por Computador , Evolução Molecular , Efeito Fundador , Modelos Lineares , Desequilíbrio de Ligação , Repetições de Microssatélites , Modelos Genéticos , Dinâmica Populacional , Análise de Regressão , Ouriços-do-Mar/classificação , Temperatura
4.
Mol Ecol Resour ; 18(6): 1392-1401, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30009542

RESUMO

Environmental DNA (eDNA) sampling-the detection of genetic material in the environment to infer species presence-has rapidly grown as a tool for sampling aquatic animal communities. A potentially powerful feature of environmental sampling is that all taxa within the habitat shed DNA and so may be detectable, creating opportunity for whole-community assessments. However, animal DNA in the environment tends to be comparatively rare, making it necessary to enrich for genetic targets from focal taxa prior to sequencing. Current metabarcoding approaches for enrichment rely on bulk amplification using conserved primer annealing sites, which can result in skewed relative sequence abundance and failure to detect some taxa because of PCR bias. Here, we test capture enrichment via hybridization as an alternative strategy for target enrichment using a series of experiments on environmental samples and laboratory-generated, known-composition DNA mixtures. Capture enrichment resulted in detecting multiple species in both kinds of samples, and postcapture relative sequence abundance accurately reflected initial relative template abundance. However, further optimization is needed to permit reliable species detection at the very low-DNA quantities typical of environmental samples (<0.1 ng DNA). We estimate that our capture protocols are comparable to, but less sensitive than, current PCR-based eDNA analyses.


Assuntos
Organismos Aquáticos/classificação , Organismos Aquáticos/genética , Código de Barras de DNA Taxonômico/métodos , DNA/isolamento & purificação , Monitoramento Ambiental/métodos , Metagenômica/métodos , Hibridização de Ácido Nucleico/métodos , Animais , DNA/genética , Sensibilidade e Especificidade
5.
Ecol Evol ; 6(9): 2739-50, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27066248

RESUMO

The effectiveness and accuracy of detection using environmental DNA (eDNA) is dependent on understanding the influence laboratory methods such as DNA extraction and PCR strategies have on detection probability. Ideally choice of sampling and extraction method will maximize eDNA yield and detection probability. Determining the survey effort required to reach a satisfactory detection probability (via increased PCR replicates or more sampling) could compensate for a lower eDNA yield if the sampling and extraction method has other advantages for a study, species or system. I analysed the effect of three different sampling and extraction methods on eDNA yield, detection probability and PCR replication for detecting the endangered freshwater fish Macquaria australasica from water samples. The impact of eDNA concentration, PCR strategy, target amplicon size and two marker regions: 12S (a mitochondrial gene) and 18S (a nuclear gene) was also assessed. The choice of sampling and extraction method and PCR strategy, rather than amplicon size and marker region, had the biggest effect on detection probability and PCR replication. The PCR replication effort required to achieve a detection probability of 0.95, ranged from 2 to 6 PCR replicates depending on the laboratory method used. As all methods yielded eDNA from which M. australasica was detected using the three target amplicons, differences in eDNA yield and detection probability between the three methods could be mitigated by determining the appropriate PCR replication effort. Evaluating the effect sampling and extraction methods will have on the detection probability and determining the laboratory protocols and PCR replication required to maximize detection and minimize false positives and negatives is a useful first step for eDNA occupancy studies.

6.
PLoS One ; 9(10): e109830, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25337999

RESUMO

Ecogeographical rules help explain spatial and temporal patterns in intraspecific body size. However, many of these rules, when applied to ectothermic organisms such as reptiles, are controversial and require further investigation. To explore factors that influence body size in reptiles, we performed a heuristic study to examine body size variation in an Australian lizard, Boulenger's Skink Morethia boulengeri from agricultural landscapes in southern New South Wales, south-eastern Australia. We collected tissue and morphological data on 337 adult lizards across a broad elevation and climate gradient. We used a model-selection procedure to determine if environmental or ecological variables best explained body size variation. We explored the relationship between morphology and phylogenetic structure before modeling candidate variables from four broad domains: (1) geography (latitude, longitude and elevation), (2) climate (temperature and rainfall), (3) habitat (vegetation type, number of logs and ground cover attributes), and (4) management (land use and grazing history). Broad phylogenetic structure was evident, but on a scale larger than our study area. Lizards were sexually dimorphic, whereby females had longer snout-vent length than males, providing support for the fecundity selection hypothesis. Body size variation in M. boulengeri was correlated with temperature and rainfall, a pattern consistent with larger individuals occupying cooler and more productive parts of the landscape. Climate change forecasts, which predict warmer temperature and increased aridity, may result in reduced lizard biomass and decoupling of trophic interactions with potential implications for community organization and ecosystem function.


Assuntos
Tamanho Corporal/fisiologia , Lagartos/anatomia & histologia , Caracteres Sexuais , Animais , Clima , Ecossistema , Feminino , Geografia , Lagartos/fisiologia , Masculino , Filogenia , Austrália do Sul
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa