Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cell Biochem Biophys ; 82(2): 1309-1324, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38740667

RESUMO

Diabetes mellitus is a serious and complex metabolic disorder characterized by hyperglycemia. In recent years natural products has gained much more interest by researchers as alternative sources for diabetes treatment. Though many potential agents are identified so far but their clinical utility is limited because of their adverse effects. Therefore, there is a keen interest in discovering natural compounds to treat diabetes efficiently with less side effects. Dalbergia latifolia is well explored because of its diverse pharmacological activities including diabetes. Therefore, the present research work aimed to identify and isolate the potential antidiabetic agents from the heart wood of Dalbergia latifolia. We successfully extracted DGN and ISG from the heartwood and evaluated their antidiabetic potential both in-vivo and in-vitro. Alpha amylase activity inhibition of ISG and DGN was found to be 99.05 ± 8.54% (IC50 = 0.6025 µg/mL) and 84.68 ± 5.2% (IC50 = 0.0216 µg/mL) respectively. Glucose uptake assay revealed DGN (158%) promoted maximum uptake than ISG (77%) over control. In vivo anti diabetic activity was evaluated by inducing diabetes in SD rats with the help of HFD and STZ (35 mg/kg body weight). After the continuous administration of DGN (5 mg/kg, 10 mg/kg) and ISG (5 mg/kg, 10 mg/kg) for 14 days, we observed the reduction in the blood glucose levels, body weight, total cholesterol, low density lipoprotein, very low-density lipoprotein, blood urea, serum creatinine, serum glutamate oxaloacetic transaminase, serum glutamate pyruvate transaminase and alkaline phosphatase levels than vehicle group indicates the potency of ISG and DGN against diabetes.


Assuntos
Glicemia , Chalconas , Dalbergia , Diabetes Mellitus Experimental , Hipoglicemiantes , Ratos Sprague-Dawley , Animais , Ratos , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química , Hipoglicemiantes/uso terapêutico , Masculino , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Dalbergia/química , Chalconas/farmacologia , Chalconas/química , Chalconas/uso terapêutico , Glicemia/metabolismo , Madeira/química , alfa-Amilases/metabolismo , alfa-Amilases/antagonistas & inibidores , Extratos Vegetais/química , Extratos Vegetais/farmacologia
2.
Curr Drug Res Rev ; 15(2): 122-148, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36683366

RESUMO

BACKGROUND: Epidemiological studies have suggested that a regular intake of flavonoids is beneficial for cellular homeostasis and in the prevention of the transformation of normal cells into cancerous cells. Because of their multiple biological targets, flavonoids have been studied and investigated as phytoconstituents with potential anticancer properties. Flavonoids interfere in the development of cancerous cells by inhibition of topoisomerases, protein kinases, angiogenesis, induction of apoptosis, cell cycle arrest, modulation of multidrug resistance, and improvement in anti-oxidative activities. The current review summarizes the anticancer properties of flavonoids along with the key structural features and their mechanisms. The present study provides a detailed analysis of anticancer activities with previously published data on different flavonoids. The review highlighted the structural aspects and mechanism of action of flavonoids with their potential target sites. Flavonoids induce anticancer activity by protein kinases inhibition, P-gp modulation, antiangiogenesis, topoisomerases inhibition, etc. Open ring C, the double bond between C2-C3, the oxo group at C4, and the position of ring B are crucial determinants for their anticancer activity. Flavonoids act by multiple mechanisms but further studies on target selectivity and specificity of flavonoids are necessary to establish them as anticancer therapeutics. The presence of a C2-C3 double bond and oxo group at C4 (also known as an enone moiety) or -OH in the neighbour of a double bond that can transform easily into an enone are common features present in flavonoids. Thus, it can be concluded that enone moiety or its precursor groups are mainly responsible for the anticancer activities of flavonoids via different mechanisms of action.


Assuntos
Antioxidantes , Flavonoides , Humanos , Flavonoides/farmacologia , Flavonoides/química , Relação Estrutura-Atividade , Antioxidantes/farmacologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa