Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Hum Mol Genet ; 27(11): 1941-1954, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29788201

RESUMO

The CNTNAP2 gene, coding for the cell adhesion glycoprotein Caspr2, is thought to be one of the major susceptibility genes for autism spectrum disorder (ASD). A large number of rare heterozygous missense CNTNAP2 variants have been identified in ASD patients. However, most of them are inherited from an unaffected parent, questioning their clinical significance. In the present study, we evaluate their impact on neurodevelopmental functions of Caspr2 in a heterozygous genetic background. Performing cortical neuron cultures from mouse embryos, we demonstrate that Caspr2 plays a dose-dependent role in axon growth in vitro. Loss of one Cntnap2 allele is sufficient to elicit axonal growth alteration, revealing a situation that may be relevant for CNTNAP2 heterozygosity in ASD patients. Then, we show that the two ASD variants I869T and G731S, which present impaired binding to Contactin2/TAG-1, do not rescue axonal growth deficits. We find that the variant R1119H leading to protein trafficking defects and retention in the endoplasmic reticulum has a dominant-negative effect on heterozygous Cntnap2 cortical neuron axon growth, through oligomerization with wild-type Caspr2. Finally, we identify an additional variant (N407S) with a dominant-negative effect on axon growth although it is well-localized at the membrane and properly binds to Contactin2. Thus, our data identify a new neurodevelopmental function for Caspr2, the dysregulation of which may contribute to clinical manifestations of ASD, and provide evidence that CNTNAP2 heterozygous missense variants may contribute to pathogenicity in ASD, through selective mechanisms.


Assuntos
Transtorno do Espectro Autista/genética , Contactina 2/genética , Retículo Endoplasmático/genética , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Alelos , Animais , Transtorno do Espectro Autista/fisiopatologia , Axônios/metabolismo , Axônios/patologia , Variação Genética , Heterozigoto , Hipocampo/crescimento & desenvolvimento , Hipocampo/patologia , Humanos , Camundongos , Mutação de Sentido Incorreto , Neurônios/metabolismo , Neurônios/patologia , Ligação Proteica
2.
J Cell Sci ; 130(13): 2209-2220, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28533267

RESUMO

Caspr2 and TAG-1 (also known as CNTNAP2 and CNTN2, respectively) are cell adhesion molecules (CAMs) associated with the voltage-gated potassium channels Kv1.1 and Kv1.2 (also known as KCNA1 and KCNA2, respectively) at regions controlling axonal excitability, namely, the axon initial segment (AIS) and juxtaparanodes of myelinated axons. The distribution of Kv1 at juxtaparanodes requires axo-glial contacts mediated by Caspr2 and TAG-1. In the present study, we found that TAG-1 strongly colocalizes with Kv1.2 at the AIS of cultured hippocampal neurons, whereas Caspr2 is uniformly expressed along the axolemma. Live-cell imaging revealed that Caspr2 and TAG-1 are sorted together in axonal transport vesicles. Therefore, their differential distribution may result from diffusion and trapping mechanisms induced by selective partnerships. By using deletion constructs, we identified two molecular determinants of Caspr2 that regulate its axonal positioning. First, the LNG2-EGF1 modules in the ectodomain of Caspr2, which are involved in its axonal distribution. Deletion of these modules promotes AIS localization and association with TAG-1. Second, the cytoplasmic PDZ-binding site of Caspr2, which could elicit AIS enrichment and recruitment of the membrane-associated guanylate kinase (MAGuK) protein MPP2. Hence, the selective distribution of Caspr2 and TAG-1 may be regulated, allowing them to modulate the strategic function of the Kv1 complex along axons.


Assuntos
Segmento Inicial do Axônio/metabolismo , Contactina 2/genética , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Superfamília Shaker de Canais de Potássio/genética , Axônios/metabolismo , Axônios/fisiologia , Moléculas de Adesão Celular Neuronais/genética , Células HEK293 , Hipocampo/metabolismo , Hipocampo/fisiologia , Humanos , Neuroglia/metabolismo , Neurônios/metabolismo , Neurônios/fisiologia
3.
J Autoimmun ; 103: 102284, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31176559

RESUMO

Autoantibodies against CASPR2 (contactin-associated protein-like 2) have been linked to autoimmune limbic encephalitis that manifests with memory disorders and temporal lobe seizures. According to the growing number of data supporting a role for CASPR2 in neuronal excitability, CASPR2 forms a molecular complex with transient axonal glycoprotein-1 (TAG-1) and shaker-type voltage-gated potassium channels (Kv1.1 and Kv1.2) in compartments critical for neuronal activity and is required for Kv1 proper positioning. Whereas the perturbation of these functions could explain the symptoms observed in patients, the pathogenic role of anti-CASPR2 antibodies has been poorly studied. In the present study, we find that patient autoantibodies alter Caspr2 distribution at the cell membrane promoting cluster formation. We confirm in a HEK cellular model that the anti-CASPR2 antibodies impede CASPR2/TAG-1 interaction and we identify the domains of CASPR2 and TAG-1 taking part in this interaction. Moreover, introduction of CASPR2 into HEK cells induces a marked increase of the level of Kv1.2 surface expression and in cultures of hippocampal neurons Caspr2-positive inhibitory neurons appear to specifically express high levels of Kv1.2. Importantly, in both cellular models, anti-CASPR2 patient autoAb increase Kv1.2 expression. These results provide new insights into the pathogenic role of autoAb in the disease.


Assuntos
Autoanticorpos/metabolismo , Membrana Celular/metabolismo , Contactina 2/metabolismo , Encefalite/imunologia , Doença de Hashimoto/imunologia , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/fisiologia , Superfamília Shaker de Canais de Potássio/metabolismo , Animais , Contactina 2/genética , Células HEK293 , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/imunologia , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas/genética , Ratos , Agregação de Receptores , Superfamília Shaker de Canais de Potássio/genética , Regulação para Cima
4.
Glia ; 64(5): 840-52, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26840208

RESUMO

The precise distribution of ion channels at the nodes of Ranvier is essential for the efficient propagation of action potentials along myelinated axons. The voltage-gated potassium channels Kv1.1/1.2 are clustered at the juxtaparanodes in association with the cell adhesion molecules, Caspr2 and TAG-1 and the scaffolding protein 4.1B. In the present study, we set up myelinating cultures of DRG neurons and Schwann cells to look through the formation of juxtaparanodes in vitro. We showed that the Kv1.1/Kv1.2 channels were first enriched at paranodes before being restricted to distal paranodes and juxtaparanodes. In addition, the Kv1 channels displayed an asymmetric expression enriched at the distal juxtaparanodes. Caspr2 was strongly co-localized with Kv1.2 whereas the scaffolding protein 4.1B was preferentially recruited at paranodes while being present at juxtaparanodes too. Kv1.2/Caspr2 but not 4.1B, also transiently accumulated within the nodal region both in myelinated cultures and developing sciatic nerves. Studying cultures and sciatic nerves from 4.1B KO mice, we further showed that 4.1B is required for the proper targeting of Caspr2 early during myelination. Moreover, using adenoviral-mediated expression of Caspr-GFP and photobleaching experiments, we analyzed the stability of paranodal junctions and showed that the lateral stability of paranodal Caspr was not altered in 4.1B KO mice indicating that 4.1B is not required for the assembly and stability of the paranodal junctions. Thus, developing an adapted culture paradigm, we provide new insights into the dynamic and differential distribution of Kv1 channels and associated proteins during myelination.


Assuntos
Gânglios Espinais/citologia , Canal de Potássio Kv1.1/metabolismo , Proteínas dos Microfilamentos/metabolismo , Nós Neurofibrosos/metabolismo , Células de Schwann/metabolismo , Animais , Células Cultivadas , Contactina 2/metabolismo , Venenos Elapídicos/farmacocinética , Embrião de Mamíferos , Recuperação de Fluorescência Após Fotodegradação , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Canal de Potássio Kv1.1/genética , Canal de Potássio Kv1.2/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas dos Microfilamentos/genética , Modelos Biológicos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Ligação Proteica , Ratos , Ratos Wistar
5.
Elife ; 122023 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-37843188

RESUMO

The role of myelination for axonal conduction is well-established in projection neurons but little is known about its significance in GABAergic interneurons. Myelination is discontinuous along interneuron axons and the mechanisms controlling myelin patterning and segregation of ion channels at the nodes of Ranvier have not been elucidated. Protein 4.1B is implicated in the organization of the nodes of Ranvier as a linker between paranodal and juxtaparanodal membrane proteins to the spectrin cytoskeleton. In the present study, 4.1B KO mice are used as a genetic model to analyze the functional role of myelin in Lhx6-positive parvalbumin (PV) and somatostatin (SST) neurons, two major classes of GABAergic neurons in the hippocampus. We show that 4.1B-deficiency induces disruption of juxtaparanodal K+ channel clustering and mislocalization of nodal or heminodal Na+ channels. Strikingly, 4.1B-deficiency causes loss of myelin in GABAergic axons in the hippocampus. In particular, stratum oriens SST cells display severe axonal dysmyelination and a reduced excitability. This reduced excitability is associated with a decrease in occurrence probability of small amplitude synaptic inhibitory events on pyramidal cells. In contrast, stratum pyramidale fast-spiking PV cells do not appear affected. In conclusion, our results indicate a class-specific effect of dysmyelination on the excitability of hippocampal interneurons associated with a functional alteration of inhibitory drive.


Assuntos
Hipocampo , Interneurônios , Camundongos , Animais , Interneurônios/fisiologia , Hipocampo/metabolismo , Células Piramidais/metabolismo , Axônios/fisiologia , Neurônios GABAérgicos/metabolismo , Parvalbuminas/metabolismo
6.
Cell Rep ; 35(6): 109121, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33979625

RESUMO

The vascular endothelial growth factor (VEGF) pathway regulates key processes in synapse function, which are disrupted in early stages of Alzheimer's disease (AD) by toxic-soluble amyloid-beta oligomers (Aßo). Here, we show that VEGF accumulates in and around Aß plaques in postmortem brains of patients with AD and in APP/PS1 mice, an AD mouse model. We uncover specific binding domains involved in direct interaction between Aßo and VEGF and reveal that this interaction jeopardizes VEGFR2 activation in neurons. Notably, we demonstrate that VEGF gain of function rescues basal synaptic transmission, long-term potentiation (LTP), and dendritic spine alterations, and blocks long-term depression (LTD) facilitation triggered by Aßo. We further decipher underlying mechanisms and find that VEGF inhibits the caspase-3-calcineurin pathway responsible for postsynaptic glutamate receptor loss due to Aßo. These findings provide evidence for alterations of the VEGF pathway in AD models and suggest that restoring VEGF action on neurons may rescue synaptic dysfunction in AD.


Assuntos
Doença de Alzheimer/genética , Peptídeos beta-Amiloides/metabolismo , Sinapses/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Humanos , Camundongos
7.
Life (Basel) ; 11(1)2020 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-33374190

RESUMO

The precise axonal distribution of specific potassium channels is known to secure the shape and frequency of action potentials in myelinated fibers. The low-threshold voltage-gated Kv1 channels located at the axon initial segment have a significant influence on spike initiation and waveform. Their role remains partially understood at the juxtaparanodes where they are trapped under the compact myelin bordering the nodes of Ranvier in physiological conditions. However, the exposure of Kv1 channels in de- or dys-myelinating neuropathy results in alteration of saltatory conduction. Moreover, cell adhesion molecules associated with the Kv1 complex, including Caspr2, Contactin2, and LGI1, are target antigens in autoimmune diseases associated with hyperexcitability such as encephalitis, neuromyotonia, or neuropathic pain. The clustering of Kv1.1/Kv1.2 channels at the axon initial segment and juxtaparanodes is based on interactions with cell adhesion molecules and cytoskeletal linkers. This review will focus on the trafficking and assembly of the axonal Kv1 complex in the peripheral and central nervous system (PNS and CNS), during development, and in health and disease.

8.
Front Cell Neurosci ; 9: 265, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26217189

RESUMO

Contactin-associated protein-like 2 (Caspr2), also known as CNTNAP2, is a cell adhesion molecule that clusters voltage-gated potassium channels (Kv1.1/1.2) at the juxtaparanodes of myelinated axons and may regulate axonal excitability. As a component of the Kv1 complex, Caspr2 has been identified as a target in neuromyotonia and Morvan syndrome, but also in some cases of autoimmune limbic encephalitis (LE). How anti-Caspr2 autoimmunity is linked with the central neurological symptoms is still elusive. In the present study, using anti-Caspr2 antibodies from seven patients affected by pure LE, we determined that IgGs in the cerebrospinal fluid of four out seven patients were selectively directed against the N-terminal Discoïdin and LamininG1 modules of Caspr2. Using live immunolabeling of cultured hippocampal neurons, we determined that serum IgGs in all patients strongly targeted inhibitory interneurons. Caspr2 was highly detected on GAD65-positive axons that are surrounding the cell bodies and at the VGAT-positive inhibitory presynaptic contacts. Functional assays indicated that LE autoantibodies may induce alteration of Gephyrin clusters at inhibitory synaptic contacts. Next, we generated a Caspr2-Fc chimera to reveal Caspr2 receptors on hippocampal neurons localized at the somato-dendritic compartment and post-synapse. Caspr2-Fc binding was strongly increased on TAG-1-transfected neurons and conversely, Caspr2-Fc did not bind hippocampal neurons from TAG-1-deficient mice. Our data indicate that Caspr2 may participate as a cell recognition molecule in the dynamics of inhibitory networks. This study provides new insight into the potential pathogenic effect of anti-Caspr2 autoantibodies in central hyperexcitability that may be related with perturbation of inhibitory interneuron activity.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa