RESUMO
Bone deficits are frequent in HIV-1-infected patients. We report here that osteoclasts, the cells specialized in bone resorption, are infected by HIV-1 in vivo in humanized mice and ex vivo in human joint biopsies. In vitro, infection of human osteoclasts occurs at different stages of osteoclastogenesis via cell-free viruses and, more efficiently, by transfer from infected T cells. HIV-1 infection markedly enhances adhesion and osteolytic activity of human osteoclasts by modifying the structure and function of the sealing zone, the osteoclast-specific bone degradation machinery. Indeed, the sealing zone is broader due to F-actin enrichment of its basal units (i.e., the podosomes). The viral protein Nef is involved in all HIV-1-induced effects partly through the activation of Src, a regulator of podosomes and of their assembly as a sealing zone. Supporting these results, Nef-transgenic mice exhibit an increased osteoclast density and bone defects, and osteoclasts derived from these animals display high osteolytic activity. Altogether, our study evidences osteoclasts as host cells for HIV-1 and their pathological contribution to bone disorders induced by this virus, in part via Nef.
Assuntos
Reabsorção Óssea/etiologia , Infecções por HIV/complicações , HIV-1/fisiologia , Osteoclastos/virologia , Actinas/metabolismo , Animais , Reabsorção Óssea/metabolismo , Reabsorção Óssea/patologia , Reabsorção Óssea/fisiopatologia , Osso e Ossos/metabolismo , Adesão Celular , Feminino , Infecções por HIV/metabolismo , Infecções por HIV/patologia , Infecções por HIV/virologia , HIV-1/genética , Humanos , Camundongos , Osteoclastos/citologia , Osteoclastos/metabolismo , Produtos do Gene nef do Vírus da Imunodeficiência Humana/genética , Produtos do Gene nef do Vírus da Imunodeficiência Humana/metabolismoRESUMO
Immune response against pathogens is a tightly regulated process that must ensure microbial control while preserving integrity of the infected organs. Tuberculosis (TB) is a paramount example of a chronic infection in which antimicrobial immunity is protective in the vast majority of infected individuals but can become detrimental if not finely tuned. Here, we report that C-type lectin dendritic cell (DC) immunoreceptor (DCIR), a key component in DC homeostasis, is required to modulate lung inflammation and bacterial burden in TB. DCIR is abundantly expressed in pulmonary lesions in Mycobacterium tuberculosis-infected nonhuman primates during both latent and active disease. In mice, we found that DCIR deficiency impairs STAT1-mediated type I IFN signaling in DCs, leading to increased production of IL-12 and increased differentiation of T lymphocytes toward Th1 during infection. As a consequence, DCIR-deficient mice control M. tuberculosis better than WT animals but also develop more inflammation characterized by an increased production of TNF and inducible NOS (iNOS) in the lungs. Altogether, our results reveal a pathway by which a C-type lectin modulates the equilibrium between infection-driven inflammation and pathogen's control through sustaining type I IFN signaling in DCs.
Assuntos
Células Dendríticas/imunologia , Interferon Tipo I/imunologia , Lectinas Tipo C/imunologia , Tuberculose/imunologia , Animais , Feminino , Lectinas Tipo C/genética , Macaca mulatta , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação , Fator de Transcrição STAT1/imunologia , Transdução de SinaisRESUMO
Type 1 diabetes is an autoimmune disease resulting from the destruction of pancreatic ß cells by the immune system. NKT cells are innate-like T cells that can exert potent immuno-regulatory functions. The regulatory role of NKT cells was initially proposed after the observed decreased frequency of this subset in mouse models of type 1 diabetes, as well as in patients developing various autoimmune pathologies. Increasing NKT cell frequency and function prevent the development of type 1 diabetes in mouse models. Several mechanisms including IL-4 and IL-10 production by NKT cells and the accumulation of tolerogenic dendritic cells are critical for the dampening of pathogenic anti-islet T cell responses by NKT cells. Importantly, these cells can at the same time prevent diabetes and promote efficient immune responses against infectious agents. These results strengthen the potential role of NKT cells as a key target for the development of therapeutic strategies against type 1 diabetes.
Assuntos
Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/prevenção & controle , Células Matadoras Naturais/imunologia , Animais , Apresentação de Antígeno/imunologia , Células Dendríticas/imunologia , Galactosilceramidas/uso terapêutico , Homeostase , Humanos , Tolerância Imunológica/imunologia , Interleucina-10/fisiologia , Interleucina-4/fisiologia , Camundongos , Viroses/imunologiaRESUMO
While tuberculosis (TB) is a risk factor in HIV-1-infected individuals, the mechanisms by which Mycobacterium tuberculosis (Mtb), the agent of TB in humans, worsens HIV-1 pathogenesis still need to be fully elucidated. Recently, we showed that HIV-1 infection and spread are exacerbated in macrophages exposed to TB-associated microenvironments. Transcriptomic analysis of macrophages conditioned with medium of Mtb-infected human macrophages (cmMTB) revealed an up-regulation of the typeI interferon (IFN-I) pathway, characterized by the overexpression of IFN-inducible genes. Historically, IFN-I are well known for their antiviral functions, but our previous work showed that this is not the case in the context of coinfection with HIV-1. Here, we show that the IFN-I response signature in cmMTB-treated macrophages matches the one observed in the blood of active TB patients, and depends on the timing of incubation with cmMTB. This suggests that the timing of macrophage's exposure to IFN-I can impact their capacity to control HIV-1 infection. Strikingly, we found that cmMTB-treated macrophages are hyporesponsive to extrastimulation with exogenous IFN-I, used to mimic HIV-1 infection. Yet, depleting STAT1 by gene silencing to block the IFN-I signaling pathway reduced TB-induced exacerbation of HIV-1 infection. Altogether, by aiming to understand why TB-derived IFN-I preexposure of macrophages did not induce antiviral immunity against HIV-1, we demonstrated that these cells are hyporesponsive to exogenous IFN-I, a phenomenon that prevents macrophage activation against HIV-1.
Mycobacterium tuberculosis induces hyporesponsiveness of the IFN-I signaling pathway in macrophages, leading to the exacerbation of HIV-1 replication.
Assuntos
Coinfecção , Infecções por HIV , Interferon Tipo I , Macrófagos , Mycobacterium tuberculosis , Tuberculose , Humanos , HIV-1 , Macrófagos/metabolismo , Macrófagos/virologia , Transdução de Sinais , Tuberculose/metabolismo , Interferon Tipo I/metabolismoRESUMO
While tuberculosis (TB) is a risk factor in HIV-1-infected individuals, the mechanisms by which Mycobacterium tuberculosis (Mtb) worsens HIV-1 pathogenesis remain scarce. We showed that HIV-1 infection is exacerbated in macrophages exposed to TB-associated microenvironments due to tunneling nanotube (TNT) formation. To identify molecular factors associated with TNT function, we performed a transcriptomic analysis in these macrophages, and revealed the up-regulation of Siglec-1 receptor. Siglec-1 expression depends on Mtb-induced production of type I interferon (IFN-I). In co-infected non-human primates, Siglec-1 is highly expressed by alveolar macrophages, whose abundance correlates with pathology and activation of IFN-I/STAT1 pathway. Siglec-1 localizes mainly on microtubule-containing TNT that are long and carry HIV-1 cargo. Siglec-1 depletion decreases TNT length, diminishes HIV-1 capture and cell-to-cell transfer, and abrogates the exacerbation of HIV-1 infection induced by Mtb. Altogether, we uncover a deleterious role for Siglec-1 in TB-HIV-1 co-infection and open new avenues to understand TNT biology.
Assuntos
HIV-1/patogenicidade , Interferon Tipo I/imunologia , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/virologia , Lectina 1 Semelhante a Ig de Ligação ao Ácido Siálico/genética , Tuberculose Pulmonar/imunologia , Animais , Células Cultivadas , Coinfecção/imunologia , Feminino , Perfilação da Expressão Gênica , Infecções por HIV , Humanos , Macaca mulatta , Masculino , Nanotubos , Lectina 1 Semelhante a Ig de Ligação ao Ácido Siálico/imunologiaRESUMO
The tuberculosis (TB) bacillus, Mycobacterium tuberculosis (Mtb), and HIV-1 act synergistically; however, the mechanisms by which Mtb exacerbates HIV-1 pathogenesis are not well known. Using in vitro and ex vivo cell culture systems, we show that human M(IL-10) anti-inflammatory macrophages, present in TB-associated microenvironment, produce high levels of HIV-1. In vivo, M(IL-10) macrophages are expanded in lungs of co-infected non-human primates, which correlates with disease severity. Furthermore, HIV-1/Mtb co-infected patients display an accumulation of M(IL-10) macrophage markers (soluble CD163 and MerTK). These M(IL-10) macrophages form direct cell-to-cell bridges, which we identified as tunneling nanotubes (TNTs) involved in viral transfer. TNT formation requires the IL-10/STAT3 signaling pathway, and targeted inhibition of TNTs substantially reduces the enhancement of HIV-1 cell-to-cell transfer and overproduction in M(IL-10) macrophages. Our study reveals that TNTs facilitate viral transfer and amplification, thereby promoting TNT formation as a mechanism to be explored in TB/AIDS potential therapeutics.
Assuntos
Infecções por HIV/complicações , Interleucina-10/metabolismo , Macrófagos/patologia , Nanotubos , Fator de Transcrição STAT3/metabolismo , Tuberculose Pulmonar/complicações , Adulto , Idoso , Animais , Células Cultivadas , Coinfecção/patologia , Coinfecção/virologia , Feminino , Infecções por HIV/imunologia , Infecções por HIV/patologia , Infecções por HIV/virologia , Humanos , Macaca mulatta , Ativação de Macrófagos , Macrófagos/virologia , Masculino , Pessoa de Meia-Idade , Mycobacterium tuberculosis , Transdução de Sinais , Tuberculose Pulmonar/imunologia , Tuberculose Pulmonar/patologia , Replicação Viral , Adulto JovemRESUMO
Determining how cells generate and transduce mechanical forces at the nanoscale is a major technical challenge for the understanding of numerous physiological and pathological processes. Podosomes are submicrometer cell structures with a columnar F-actin core surrounded by a ring of adhesion proteins, which possess the singular ability to protrude into and probe the extracellular matrix. Using protrusion force microscopy, we have previously shown that single podosomes produce local nanoscale protrusions on the extracellular environment. However, how cellular forces are distributed to allow this protruding mechanism is still unknown. To investigate the molecular machinery of protrusion force generation, we performed mechanical simulations and developed quantitative image analyses of nanoscale architectural and mechanical measurements. First, in silico modeling showed that the deformations of the substrate made by podosomes require protrusion forces to be balanced by local traction forces at the immediate core periphery where the adhesion ring is located. Second, we showed that three-ring proteins are required for actin polymerization and protrusion force generation. Third, using DONALD, a 3D nanoscopy technique that provides 20 nm isotropic localization precision, we related force generation to the molecular extension of talin within the podosome ring, which requires vinculin and paxillin, indicating that the ring sustains mechanical tension. Our work demonstrates that the ring is a site of tension, balancing protrusion at the core. This local coupling of opposing forces forms the basis of protrusion and reveals the podosome as a nanoscale autonomous force generator.
Assuntos
Podossomos/química , Actinas/química , Actinas/metabolismo , Fenômenos Biomecânicos , Adesão Celular , Células Cultivadas , Simulação por Computador , Humanos , Macrófagos/citologia , Macrófagos/metabolismo , Mecanotransdução Celular , Monócitos/citologia , Monócitos/metabolismo , Nanoestruturas/química , Tamanho da Partícula , Paxilina/química , Paxilina/metabolismo , Podossomos/ultraestrutura , Propriedades de Superfície , Talina/química , Talina/metabolismo , Vinculina/química , Vinculina/metabolismoRESUMO
The human CD14(+) monocyte compartment is composed by two subsets based on CD16 expression. We previously reported that this compartment is perturbed in tuberculosis (TB) patients, as reflected by the expansion of CD16(+) monocytes along with disease severity. Whether this unbalance is beneficial or detrimental to host defense remains to be elucidated. Here in the context of active TB, we demonstrate that human monocytes are predisposed to differentiate towards an anti-inflammatory (M2-like) macrophage activation program characterized by the CD16(+)CD163(+)MerTK(+)pSTAT3(+) phenotype and functional properties such as enhanced protease-dependent motility, pathogen permissivity and immunomodulation. This process is dependent on STAT3 activation, and loss-of-function experiments point towards a detrimental role in host defense against TB. Importantly, we provide a critical correlation between the abundance of the CD16(+)CD163(+)MerTK(+)pSTAT3(+) cells and the progression of the disease either at the local level in a non-human primate tuberculous granuloma context, or at the systemic level through the detection of the soluble form of CD163 in human sera. Collectively, this study argues for the pathogenic role of the CD16(+)CD163(+)MerTK(+)pSTAT3(+) monocyte-to-macrophage differentiation program and its potential as a target for TB therapy, and promotes the detection of circulating CD163 as a potential biomarker for disease progression and monitoring of treatment efficacy.
Assuntos
Imunomodulação , Interleucina-10/metabolismo , Monócitos/imunologia , Monócitos/patologia , Receptores de IgG/metabolismo , Fator de Transcrição STAT3/metabolismo , Tuberculose/imunologia , Tuberculose/patologia , HumanosRESUMO
Obesity and type 2 diabetes (T2D) are associated with low-grade inflammation, activation of immune cells, and alterations of the gut microbiota. Mucosal-associated invariant T (MAIT) cells, which are innate-like T cells that recognize bacterial ligands, are present in blood and enriched in mucosal and inflamed tissues. Here, we analyzed MAIT cells in the blood and adipose tissues of patients with T2D and/or severe obesity. We determined that circulating MAIT cell frequency was dramatically decreased in both patient groups, and this population was even undetectable in some obese patients. Moreover, in both patient groups, circulating MAIT cells displayed an activated phenotype that was associated with elevated Th1 and Th17 cytokine production. In obese patients, MAIT cells were more abundant in adipose tissue than in the blood and exhibited a striking IL-17 profile. Bariatric surgery in obese patients not only improved their metabolic parameters but also increased circulating MAIT cell frequency at 3 months after surgery. Similarly, cytokine production by blood MAIT cells was strongly decreased after surgery. This study reveals profound MAIT cell abnormalities in patients harboring metabolic disorders, suggesting their potential role in these pathologies.