RESUMO
Etripamil is a calcium channel blocker currently in Phase 3 trials for the treatment of paroxysmal supraventricular tachycardia (PSVT). Systemic and local toxicity following once-weekly intranasal administration of etripamil was evaluated in cynomolgus macaques to support clinical development. Groups of animals (N = 8, 4 males and 4 females) were administered etripamil into the left nostril weekly at dose levels of 0 (vehicle), 1.9, 3.8, or 5.7 mg/kg/dose for 26 doses. Persistence, reversibility, and progression of findings were examined following a 28-day recovery period. Clinical signs were transient and were related to the intranasal administration (e.g., nasal discharge, sneezing, etc.) of etripamil. There were no macroscopic or systemic microscopic findings at any dose. Etripamil-related adaptive and reactive local changes affecting the nasal cavity, larynx, and nasopharynx were observed at ≥1.9 mg/kg/dose. Minimal to severe dose-dependent nasal epithelial damage was observed, mainly affecting respiratory and transitional epithelium. Following the 28-day recovery period, microscopic changes were confined to the left nasal cavity and nasopharynx. These changes were significantly lower in incidence and severity, with noticeable reversal of the adaptive and reactive changes, indicating partial to complete recovery of the epithelial lining. Based on the lack of systemic toxicity and the minimal and transient nasal changes, the systemic, no observable adverse effect level (NOAEL) of etripamil in monkeys was the high dose, 5.7 mg/kg/dose. The NOAEL for local toxicity was 1.9 mg/kg/dose. Collectively, these data support further study of etripamil in human trials as a potential treatment for PSVT.
Assuntos
Bloqueadores dos Canais de Cálcio , Macaca fascicularis , Sprays Nasais , Animais , Masculino , Feminino , Bloqueadores dos Canais de Cálcio/toxicidade , Bloqueadores dos Canais de Cálcio/administração & dosagem , Taquicardia Supraventricular/tratamento farmacológico , Taquicardia Supraventricular/induzido quimicamente , Administração Intranasal , Avaliação Pré-Clínica de Medicamentos , Nível de Efeito Adverso não Observado , Humanos , Relação Dose-Resposta a DrogaRESUMO
Respiratory syncytial virus (RSV) is a leading cause of acute lower respiratory tract infections (LRTI) in infants, and toddlers and vaccines are not yet available. A pediatric RSV vaccine (ChAd155-RSV) is being developed to protect infants against RSV disease. The ChAd155-RSV vaccine consists of a recombinant replication-deficient chimpanzee-derived adenovirus (ChAd) group C vector engineered to express the RSV antigens F, N, and M2-1. The local and systemic effects of three bi-weekly intramuscular injections of the ChAd155-RSV vaccine was tested in a repeated-dose toxicity study in rabbits. After three intramuscular doses, the ChAd155-RSV vaccine was considered well-tolerated. Changes due to the vaccine-elicited inflammatory reaction/immune response were observed along with transient decreases in platelet count without physiological consequences, already reported for other adenovirus-based vaccines. In addition, the biodistribution and shedding of ChAd155-RSV were also characterized in two studies in rats. The distribution and persistence of the ChAd155-RSV vaccine candidate was consistent with other similar adenovector-based vaccines, with quantifiable levels of ChAd155-RSV observed at the injection site (muscle) and the draining lymph nodes up to 69 days post administration. The shedding results demonstrated that ChAd155-RSV was generally not detectable in any secretions or excreta samples. In conclusion, the ChAd155-RSV vaccine was well-tolerated locally and systemically.
Assuntos
Vacinas contra Vírus Sincicial Respiratório , Vírus Sincicial Respiratório Humano , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Humanos , Coelhos , Ratos , Distribuição Tecidual , Proteínas Virais de FusãoRESUMO
The novel self-amplifying mRNA (SAM) technology for vaccines consists of an engineered replication-deficient alphavirus genome encoding an RNA-dependent RNA polymerase and the gene of the target antigen. To validate the concept, the rabies glycoprotein G was chosen as antigen. The delivery system for this vaccine was a cationic nanoemulsion. To characterize the local tolerance, potential systemic toxicity and biodistribution of this vaccine, two nonclinical studies were performed. In the repeated dose toxicity study, the SAM vaccine was administered intramuscularly to rats on four occasions at two-week intervals followed by a four-week recovery period. SAM-related changes consisted of a transient increase in neutrophil count, alpha-2-macroglobulin and fibrinogen levels. Transient aspartate aminotransferase and alanine aminotransferase increases were also noted in females only. At necropsy, observations related to the elicited inflammatory reaction, such as enlargement of the draining lymph nodes were observed that were almost fully reversible by the end of the recovery period. In the biodistribution study, rats received a single intramuscular injection of SAM vaccine and then were followed until Day 60. Rabies RNA was found at the injection sites and in the draining lymph nodes one day after administration, then generally decreased in these tissues but remained detectable up to Day 60. Rabies RNA was also transiently found in blood, lungs, spleen and liver. No microscopic changes in the brain and spinal cord were recorded. In conclusion, these results showed that the rabies SAM vaccine was well-tolerated by the animals and supported the clinical development program.