RESUMO
Oral squamous cell carcinoma (OSCC) is a head and neck cancer (HNC) with a high mortality rate. OSCC is developed in the oral cavity and it is triggered by many etiologic factors and can metastasize both regionally and distantly. Recent research advances in OSCC improved our understanding on the molecular mechanisms involved in and the initiation of OSCC metastasis. The key roles of the extracellular matrix (ECM) in OSCC are an emerging area of intensive research as the ECM macromolecular network is actively involved in events that regulate cellular morphological and functional properties, transcription and cell signaling mechanisms in invasion and metastasis. The provisional matrix that is formed by cancer cells is profoundly different in composition and functions as compared with the matrix of normal tissue. Fibroblasts are mainly responsible for matrix production and remodeling, but in cancer, the tumor matrix in the tumor microenvironment (TME) also originates from cancer cells. Even though extensive research has been conducted on the role of ECM in regulating cancer pathogenesis, its role in modulating OSCC is less elucidated since there are several issues yet to be fully understood. This critical review is focused on recent research as to present and discuss on the involvement of ECM macromolecular effectors (i.e., proteoglycans, integrins, matrix metalloproteinases) in OSCC development and progression.
Assuntos
Carcinoma de Células Escamosas , Matriz Extracelular , Neoplasias Bucais , Microambiente Tumoral , Humanos , Neoplasias Bucais/patologia , Neoplasias Bucais/metabolismo , Neoplasias Bucais/genética , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/genética , Integrinas/metabolismo , Integrinas/genética , Metaloproteinases da Matriz/metabolismo , Metaloproteinases da Matriz/genética , Transdução de SinaisRESUMO
The incidence of head and neck cancer (HNC), constituting approximately one in ten cancer cases worldwide, affects approximately 644,000 individuals annually. Managing this complex disease involves various treatment modalities such as systemic therapy, radiation, and surgery, particularly for patients with locally advanced disease. HNC treatment necessitates a multidisciplinary approach due to alterations in patients' genomes affecting their functionality. Predominantly, squamous cell carcinomas (SCCs), the majority of HNCs, arise from the upper aerodigestive tract epithelium. The epidemiology, staging, diagnosis, and management techniques of head and neck squamous cell carcinoma (HNSCC), encompassing clinical, image-based, histopathological and molecular profiling, have been extensively reviewed. Lymph node metastasis (LNM) is a well-known predictive factor for HNSCC that initiates metastasis and significantly impacts HNSCC prognosis. Distant metastasis (DM) in HNSCC has been correlated to aberrant expression of cancer cell-derived cytokines and growth factors triggering abnormal activation of several signaling pathways that boost cancer cell aggressiveness. Recent advances in genetic profiling, understanding tumor microenvironment, oligometastatic disease, and immunotherapy have revolutionized treatment strategies and disease control. Future research may leverage genomics and proteomics to identify biomarkers aiding individualized HNSCC treatment. Understanding the molecular basis, genetic landscape, atypical signaling pathways, and tumor microenvironment have enhanced the comprehension of HNSCC molecular etiology. This critical review sheds light on regional and distant metastases in HNSCC, presenting major clinical and laboratory features, predictive biomarkers, and available therapeutic approaches.
Assuntos
Neoplasias de Cabeça e Pescoço , Carcinoma de Células Escamosas de Cabeça e Pescoço , Humanos , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/patologia , Neoplasias de Cabeça e Pescoço/terapia , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/terapia , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Microambiente Tumoral/genética , Metástase Linfática/genética , Metástase Linfática/patologia , Prognóstico , Metástase Neoplásica , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/terapiaRESUMO
Expression of miRNAs is critical for the regulation of several cell functions including proliferation, migration, differentiation, and survival, as well as extracellular matrix (ECM) remodeling. The dynamic interplay between miRNAs, ECM macromolecules, and the tumor microenvironment plays critical roles in many aspects of human diseases such as metabolic disorders and cancers. Circulating and secreted miRNAs, via membrane vesicles, affect cell-cell communication and cellular metabolic pathways, underscoring their significance in tumor progression. The primary goal of this article is to highlight the importance of epigenetic regulatory factors, focusing on miRNA-mediated ECM reorganization and their functional relationships, and how matrix-mediated miRNAs affect tumor progression.
Assuntos
MicroRNA Circulante/metabolismo , Matriz Extracelular/metabolismo , Neoplasias/metabolismo , RNA Neoplásico/metabolismo , Microambiente Tumoral , Animais , Matriz Extracelular/patologia , Humanos , Neoplasias/patologiaRESUMO
Head and neck cancer (HNC) encompasses a number of malignancies originating in the head and neck area. In patients with HNC, cervical lymph nodes constitute metastatic sites for cancer cells that escape primary tumors. The premetastatic niche (PMN) is a crucial concept in understanding metastatic disease. PMN refers to the microenvironment resulting mainly from primary tumor cells to foster metastatic tumor cell growth at a distant organ. Tumor microenvironment (TME) plays an important part in the pathogenesis of PMN. A significant prognostic factor is the close association between metastases of lymph nodes and organ dissemination in many different malignancies. The nodal premetastatic niche (NPMN) is a particular type of PMN located within the lymph nodes. NPMN formation is specifically important in HNC as regional lymph node metastasis commonly occurs. The formation happens when tumor cells create a supportive microenvironment within lymph nodes, facilitating their survival, growth, spread, and invasion. This complex mechanism involves multiple steps and cellular interactions between the primary tumor and tumor microenvironment. Several extracellular matrix (ECM) macromolecules, cytokines, and growth factors are implicated in this process. The aim of this article is to present the most recent data on the regulation of the lymph node PMN at molecular and cellular levels in HNC, as well as insights with respect to the relationship between primary tumor cells and the microenvironment of lymph nodes, and the formation of NPMN. We also critically discuss on potential targets for preventing or disrupting nodal metastases and identify potential biomarkers for predicting HNC outcomes.
Assuntos
Neoplasias de Cabeça e Pescoço , Vasos Linfáticos , Humanos , Metástase Linfática/patologia , Neoplasias de Cabeça e Pescoço/patologia , Linfonodos/patologia , Microambiente Tumoral/fisiologiaRESUMO
Extracellular matrixes (ECMs) are intricate 3-dimensional macromolecular networks of unique architectures with regulatory roles in cell morphology and functionality. As a dynamic native biomaterial, ECM undergoes constant but tightly controlled remodeling that is crucial for the maintenance of normal cellular behavior. Under pathological conditions like cancer, ECM remodeling ceases to be subjected to control resulting in disease initiation and progression. ECM is comprised of a staggering number of molecules that interact not only with one another, but also with neighboring cells via cell surface receptors. Such interactions, too many to tally, are of paramount importance for the identification of novel disease biomarkers and more personalized therapeutic intervention. Recent advances in big data analytics have allowed the development of online databases where researchers can take advantage of a stochastic evaluation of all the possible interactions and narrow them down to only those of interest for their study, respectively. This novel approach addresses the limitations that currently exist in studies, expands our understanding on ECM interactions, and has the potential to advance the development of targeted therapies. In this article we present the current trends in ECM biology research and highlight its importance in tissue integrity, the main interaction networks, ECM-mediated cell functional properties and issues related to pharmacological targeting.
Assuntos
Matriz Extracelular , Neoplasias , Humanos , Matriz Extracelular/metabolismo , Neoplasias/metabolismo , BiologiaRESUMO
BACKGROUND: Osteoarthritis (OA) is a common degenerative chronic disease accounting for physical pain, tissue stiffness and mobility restriction. Current therapeutic approaches fail to prevent the progression of the disease considering the limited knowledge on OA pathobiology. During OA progression, the extracellular matrix (ECM) of the cartilage is aberrantly remodeled by chondrocytes. Chondrocytes, being the main cell population of the cartilage, participate in cartilage regeneration process. To this end, modern tissue engineering strategies involve the recruitment of mesenchymal stem cells (MSCs) due to their regenerative capacity as to promote chondrocyte self-regeneration. METHODS AND RESULTS: In the present study, we evaluated the role of type II collagen, as the main matrix macromolecule in the cartilage matrix, to promote chondrogenic differentiation in two MSC in vitro culture systems. The chondrogenic differentiation of human Wharton's jelly- and dental pulp-derived MSCs was investigated over a 24-day culture period on type II collagen coating to improve the binding affinity of MSCs. Functional assays, demonstrated that type II collagen promoted chondrogenic differentiation in both MSCs tested, which was confirmed through gene and protein analysis of major chondrogenic markers. CONCLUSIONS: Our data support that type II collagen contributes as a natural bioscaffold enhancing chondrogenesis in both MSC models, thus enhancing the commitment of MSC-based therapeutic approaches in regenerative medicine to target OA and bring therapy closer to the clinical use.
Assuntos
Técnicas de Cultura de Células , Condrócitos , Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Colágeno Tipo II , Humanos , Cordão Umbilical/citologia , Polpa Dentária/citologia , Condrócitos/citologia , Condrócitos/metabolismo , Osteoartrite/terapia , Cultura Primária de Células/métodos , Metaloproteinases da Matriz/metabolismo , Inibidores Teciduais de Metaloproteinases/metabolismo , Terapia Baseada em Transplante de Células e TecidosRESUMO
Proteoglycans consist one of the major extracellular matrix class of biomolecules that demonstrate nodal roles in cancer progression. Modern diagnostic and therapeutic approaches include proteoglycan detection and pharmacological targeting in various cancer types. Proteoglycans orchestrate critical signaling pathways for cancer development and progression through dynamic interactions with matrix components. It is well established that the epigenetic signatures of cancer cells play critical role in guiding their functional properties and metastatic potential. Secreted microRNAs (miRNAs) reside in a complex network with matrix proteoglycans, thus affecting cell-cell and cell-matrix communication. This mini-review aims to highlight current knowledge on the cell-surface proteoglycan-mediated signaling cascades that regulate miRNA biogenesis in cancer. Moreover, the miRNA-mediated proteoglycan regulation during cancer progression and mechanistic aspects on the way that proteoglycans affect miRNA expression are presented. Recent advances on the role of cell surface proteoglycans in exosome biogenesis and miRNA packaging and expression are also discussed.
Assuntos
MicroRNAs , Neoplasias , Matriz Extracelular/metabolismo , Humanos , MicroRNAs/metabolismo , Neoplasias/metabolismo , Proteoglicanas/genética , Proteoglicanas/metabolismo , Transdução de Sinais/fisiologiaRESUMO
Extracellular matrix (ECM) critically regulates cancer cell behavior by governing cell signaling and properties. Hyaluronan (HA) acts as a structural and functional ECM component that mediates critical properties of cancer cells in a molecular size-dependent manner. HA fragments secreted by cancer-associated fibroblasts (CAFs) reveal the correlation of HA to CAF-mediated matrix remodeling, a key step for the initiation of metastasis. The main goal of this article is to highlight the vital functions of HA in cancer cell initiation and progression as well as HA-mediated paracrine interactions among cancer and stromal cells. Furthermore, the HA implication in mediating immune responses to cancer progression is also discussed. Novel data on the role of HA in the formation of pre-metastatic niche may contribute towards the improvement of current theranostic approaches that benefit cancer management.
Assuntos
Ácido Hialurônico , Neoplasias , Matriz Extracelular , Humanos , Receptores de Hialuronatos , Ácido Hialurônico/química , Imunidade , Neoplasias/genéticaRESUMO
Polyamine toxins (PATs) are conjugates of polyamines (PAs) with lipophilic carboxylic acids, which have been recently shown to present antiproliferative activity. Ten analogs of the spider PATs Agel 416, HO-416b, and JSTX-3 and the wasp PAT PhTX-433 were synthesized with changes in the lipophilic head group and/or the PA chain, and their antiproliferative activity was evaluated on MCF-7 and MDA-MB-231 breast cancer cells, using Agel 416 and HO-416b as reference compounds. All five analogs of PhTX-433 were of very low activity on both cell lines, whereas the two analogs of JSTX-3 were highly active only on the MCF-7 cell line with IC50 values of 2.63-2.81 µΜ. Of the remaining three Agel 416 or HO-416b analogs, only the one with the spermidine chain was highly active on both cells with IC50 values of 3.15-12.6 µM. The two most potent compounds in this series, Agel 416 and HO-416b, with IC50 values of 0.09-3.98 µΜ for both cell lines, were found to have a very weak cytotoxic effect on the MCF-12A normal breast cells. The present study points out that the structure of both the head group and the PA chain determine the strength of the antiproliferative activity of PATs and their selectivity towards different cells.
Assuntos
Antineoplásicos/farmacologia , Poliaminas/química , Venenos de Aranha/síntese química , Venenos de Aranha/farmacologia , Animais , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Compostos Heterocíclicos/síntese química , Compostos Heterocíclicos/farmacologia , Humanos , Indóis/síntese química , Indóis/farmacologia , Células MCF-7 , Estrutura Molecular , Poliaminas/síntese química , Poliaminas/farmacologia , Aranhas , Relação Estrutura-Atividade , VespasRESUMO
The biological functions of estrogens are regulated by estrogen receptors (ERα and ERß), which contribute in the progression of several hormone-responsive cancer types via estrogen signaling mechanisms. The coordinated actions of ERs and extracellular matrix (ECM) macromolecules are principal mediators of ECM remodeling in the tumor and the adjacent stroma. In breast cancer, ERs are critical biomarkers as their expression in breast tumor determines the disease-free survival, yet guiding treatment decisions and predicting prognosis as well as response to endocrine therapy. In this article, we critically survey the current knowledge on dynamic interactions among ERs and major ECM macromolecules and effectors, such as growth factor receptors, proteoglycans and matrix metalloproteinases, in respect to their key effects in cancer progression, cancer cell functional properties, epithelial-to-mesenchymal transition and epigenetics. Understanding the ERs-mediated ECM reorganization during cancer progression may pave way in identifying novel targets for diagnosis and novel therapeutic approaches for cancer management.
Assuntos
Matriz Extracelular/metabolismo , Neoplasias/etiologia , Neoplasias/metabolismo , Receptores de Estrogênio/metabolismo , Animais , Biomarcadores Tumorais , Gerenciamento Clínico , Progressão da Doença , Suscetibilidade a Doenças , Matriz Extracelular/efeitos dos fármacos , Humanos , Terapia de Alvo Molecular , Neoplasias/patologia , Neoplasias/terapia , Medicina de Precisão , Prognóstico , Ligação Proteica , Receptores de Estrogênio/antagonistas & inibidores , Receptores de Estrogênio/química , Transdução de Sinais/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacosRESUMO
Cell-surface heparan sulfate proteoglycans (HSPGs) play key roles in regulating cell behavior, cell signaling, and cell matrix interactions in both physiological and pathological conditions. Their soluble forms from glycocalyx shedding are not merely waste products, but, rather, bioactive molecules, detectable in serum, which may be useful as diagnostic and prognostic markers. In addition, as in the case of glypican-3 in hepatocellular carcinoma, they may be specifically expressed by pathological tissue, representing promising targets for immunotherapy. The primary goal of this comprehensive review is to critically survey the main findings of the clinical data from the last 20 years and provide readers with an overall picture of the diagnostic and prognostic value of circulating HSPGs. Moreover, issues related to the involvement of HSPGs in various pathologies, including cardiovascular disease, thrombosis, diabetes and obesity, kidney disease, cancer, trauma, sepsis, but also multiple sclerosis, preeclampsia, pathologies requiring surgery, pulmonary disease, and others will be discussed.
Assuntos
Biomarcadores/metabolismo , Proteoglicanas de Heparan Sulfato/metabolismo , HumanosRESUMO
The extracellular matrix (ECM) constitutes a highly dynamic three-dimensional structural network comprised of macromolecules, such as proteoglycans/glycosaminoglycans (PGs/GAGs), collagens, laminins, fibronectin, elastin, other glycoproteins and proteinases. In recent years, the field of PGs has expanded rapidly. Due to their high structural complexity and heterogeneity, PGs mediate several homeostatic and pathological processes. PGs consist of a protein core and one or more covalently attached GAG chains, which provide the protein cores with the ability to interact with several proteins. The GAG building blocks of PGs significantly influence the chemical and functional properties of PGs. The primary goal of this comprehensive review is to summarize major achievements and paradigm-shifting discoveries made on the PG/GAG chemistry-biology axis, focusing on structural variability, structure-function relationships, metabolic, molecular, and epigenetic mechanisms underlying their synthesis. Recent insights related to exosome biogenesis, degradation, and cell signaling, their status as diagnostic tools and potential pharmacological targets in diseases as well as current applications in nanotechnology and biotechnology are addressed. Moreover, issues related to docking studies, molecular modeling, GAG/PG interaction networks, and their integration are discussed.
Assuntos
Glicosaminoglicanos/química , Glicosaminoglicanos/fisiologia , Proteoglicanas/química , Proteoglicanas/fisiologia , Animais , Linhagem Celular Tumoral , Epigênese Genética , Matriz Extracelular/metabolismo , Glicosaminoglicanos/genética , Humanos , Neoplasias/fisiopatologia , Doenças Neurodegenerativas/fisiopatologia , Domínios Proteicos , Proteoglicanas/genética , Transdução de Sinais/fisiologiaRESUMO
Glycosaminoglycans are integral part of the dynamic extracellular matrix (ECM) network that control crucial biochemical and biomechanical signals required for tissue morphogenesis, differentiation, homeostasis and cancer development. Breast cancer cells communicate with stromal ones to modulate ECM mainly through release of soluble effectors during cancer progression. The intracellular cross-talk between cell surface receptors and estrogen receptors is important for the regulation of breast cancer cell properties and production of ECM molecules. In turn, reorganized ECM-cell surface interface modulates signaling cascades, which regulate almost all aspects of breast cell behavior. Heparan sulfate chains present on cell surface and matrix proteoglycans are involved in regulation of breast cancer functions since they are capable of binding numerous matrix molecules, growth factors and inflammatory mediators thus modulating their signaling. In addition to its anticoagulant activity, there is accumulating evidence highlighting various anticancer activities of heparin and nano-heparin derivatives in numerous types of cancer. Importantly, heparin derivatives significantly reduce breast cancer cell proliferation and metastasis in vitro and in vivo models as well as regulates the expression profile of major ECM macromolecules, providing strong evidence for therapeutic targeting. Nano-formulations of the glycosaminoglycan heparin are possibly novel tools for targeting tumor microenvironment. In this review, the role of heparan sulfate/heparin and its nano-formulations in breast cancer biology are presented and discussed in terms of future pharmacological targeting.
Assuntos
Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Regulação Neoplásica da Expressão Gênica , Heparina/química , Heparitina Sulfato/uso terapêutico , Animais , Antineoplásicos/química , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Comunicação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Citocinas/genética , Citocinas/metabolismo , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Feminino , Heparina/uso terapêutico , Heparitina Sulfato/química , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Ligação Proteica/efeitos dos fármacos , Transdução de Sinais , Células Estromais/efeitos dos fármacos , Células Estromais/metabolismo , Células Estromais/patologiaRESUMO
With the expansion of the nanomedicine field, the knowledge focusing on the behavior of nanoparticles in the biological milieu has rapidly escalated. Upon introduction to a complex biological system, nanomaterials dynamically interact with all the encountered biomolecules and form the protein "bio-corona." The decoration with these surface biomolecules endows nanoparticles with new properties. The present review will address updates of the protein bio-corona characteristics as influenced by nanoparticle's physicochemical properties and by the particularities of the encountered biological milieu. Undeniably, bio-corona generation influences the efficacy of the nanodrug and guides the actions of innate and adaptive immunity. Exploiting the dynamic process of protein bio-corona development in combination with the new engineered horizons of drugs linked to nanoparticles could lead to innovative functional nanotherapies. Therefore, bio-medical nanotechnologies should focus on the interactions of nanoparticles with the immune system for both safety and efficacy reasons.
Assuntos
Nanomedicina/métodos , Nanoestruturas/química , Nanoestruturas/toxicidade , Coroa de Proteína/imunologia , Imunidade Adaptativa/efeitos dos fármacos , Animais , Humanos , Interações Hidrofóbicas e Hidrofílicas , Imunidade Inata/efeitos dos fármacos , Tamanho da Partícula , Coroa de Proteína/química , Coroa de Proteína/metabolismoRESUMO
Cancer cell behavior is not only governed by tumor cell-autonomous properties but also by the surrounding tumor stroma. Cancer-associated fibroblasts, blood vessels, immune cells and the extracellular matrix of the tumor microenvironment have a profound influence on tumor progression. Proteoglycans control various normal and pathological processes, modulating cell proliferation and motility, cell-matrix interactions, immune cell recruitment and angiogenesis. They are major mediators of cancer cell behavior though a dynamic interplay with extracellular matrix components. During cancer progression, their altered expression can promote the activation of several signaling cascades regulating crucial functional properties of cancer cells. Notably, the function of cell surface proteoglycans can be altered by ectodomain shedding, which converts membrane-bound coreceptors into soluble paracrine effector molecules. In this review, we highlight the importance of proteoglycans and their soluble counterparts in cancer progression and the consequences of their interactions with the adjacent stroma. The dynamic interplay among shed proteoglycans and proteolytic enzymes has a significant impact both on tumor cells and their surrounding stroma, with important implications for the diagnosis of this disease and for novel therapeutic approaches. Graphical Abstract Syndecan shedding. The mechanism of shedding involves the proteolytic cleavage of their ectodomain near the plasma membrane by metzincin enzymes, such as metalloproteinases. N-acetylglucosamine-alpha-L-iduronic acid/beta-D-glucuronic acid (HS) chains can be additionally cleaved by heparanase. Syndecan core protein can be further processed by intramembrane enzymatic cleavage. Syndecans are in a dynamic interplay with the extracellular matrix and several receptor-tyrosine-kinases (RTKs) and various growth factors, for which they act as co-receptors, thus mediating numerous signaling pathways.
Assuntos
Neoplasias/patologia , Proteoglicanas/metabolismo , Animais , Humanos , Modelos Biológicos , Prognóstico , Células Estromais/patologia , Microambiente TumoralRESUMO
Two new diastereomeric lignan amides (4 and 5) serving as dimeric caffeic acid-l-DOPA hybrids were synthesized. The synthesis involved the FeCl3-mediated phenol oxidative coupling of methyl caffeate to afford trans-diester 1a as a mixture of enantiomers, protection of the catechol units, regioselective saponification, coupling with a suitably protected l-DOPA derivative, separation of the two diastereomers thus obtained by flash column chromatography and finally global chemoselective deprotection of the catechol units. The effect of hybrids 4 and 5 and related compounds on the proliferation of two breast cancer cell lines with different metastatic potential and estrogen receptor status (MDA-MB-231 and MCF-7) and of one epithelial lung cancer cell line, namely A-549, was evaluated for concentrations ranging from 1 to 256µM and periods of treatment of 24, 48 and 72h. Both hybrids showed interesting and almost equipotent antiproliferative activities (IC50 64-70µM) for the MDA-MB-231 cell line after 24-48h of treatment, but they were more selective and much more potent (IC50 4-16µM) for the MCF-7 cells after 48h of treatment. The highest activity for both hybrids and both breast cancer lines was observed after 72h of treatment (IC50 1-2µM), probably as the result of slow hydrolysis of their methyl ester functions.
Assuntos
Amidas/farmacologia , Antineoplásicos/farmacologia , Ácidos Cafeicos/farmacologia , Levodopa/farmacologia , Lignanas/farmacologia , Amidas/química , Antineoplásicos/síntese química , Antineoplásicos/química , Ácidos Cafeicos/síntese química , Ácidos Cafeicos/química , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Levodopa/síntese química , Levodopa/química , Lignanas/química , Células MCF-7 , Estrutura Molecular , Relação Estrutura-Atividade , Células Tumorais CultivadasRESUMO
Extracellular matrices (ECMs) are dynamic 3D macromolecular networks that exhibit structural characteristics and composition specific to different tissues, serving various biomechanical and regulatory functions. The interactions between ECM macromolecules such as collagen, elastin, glycosaminoglycans (GAGs), proteoglycans (PGs), fibronectin, and laminin, along with matrix effectors and water, contribute to the unique cellular and tissue functional properties during organ development, tissue homoeostasis, remodeling, disease development, and progression. Cells adapt to environmental changes by adjusting the composition and array of ECM components. ECMs, forming the 3D bioscaffolds of our body, provide mechanical support for tissues and organs and respond to the environmental variables influencing growth and final adult body shape in mammals. Different cell types display distinct adaptations to the respective ECM environments. ECMs regulate biological processes by controlling the diffusion of infections and inflammations, sensing and adapting to external stimuli and gravity from the surrounding habitat, and, in the context of cancer, interplaying with and regulating cancer cell invasion and drug resistance. Alterations in the ECM composition in pathological conditions drive adaptive responses of cells and could therefore result in abnormal cell behavior and tissue dysfunction. Understanding the biomechanical functionality, adaptation, and roles of distinct ECMs is essential for research on various pathologies, including cancer progression and multidrug resistance, which is of crucial importance for developing targeted therapies. In this Viewpoint article, we critically present and discuss specific biomechanical functions of ECMs and regulatory adaptation mechanisms in both health and disease, with a particular focus on cancer progression.
Assuntos
Matriz Extracelular , Neoplasias , Animais , Humanos , Matriz Extracelular/metabolismo , Colágeno/metabolismo , Neoplasias/patologia , Fenômenos Biomecânicos , MamíferosRESUMO
Cancer remains a significant global health concern. Breast cancer is a multifaceted and prevalent disease influenced by several factors, among which estrogen receptors (ERs) and the extracellular matrix (ECM) play pivotal roles. ERs, encompassing ERα and ERß, exert significant diversity on tumor behavior, cell signaling, invasion, and metastatic potential, thus guiding breast cancer prognosis. Understanding the multifunctional connections between ERs and ECM that mediate the dynamics of tumor microenvironment is vital for unraveling the complexity of breast cancer pathobiology and identifying novel therapeutic targets. This critical review delves into the intricate nature of ERs, emphasizing their structural isoforms and the consequential impact on breast cancer outcomes. A detailed examination of ER-mediated cell signaling pathways reveals how differential expression of ERα and ERß isoforms influence breast cancer cell behavior. The functional ERs-matrix interactions emerge as a pivotal factor in modulating epigenetic mechanisms of breast cancer cells, orchestrating changes in cellular phenotype and expression patterns of matrix modulators. Specifically, ERα isoforms are shown to regulate ECM signaling cascades, while the effects of ECM components on ERα activity highlight a bidirectional regulatory axis. The diversity of ERß isoforms is also highlighted, illustrating their distinct contribution to ECM-mediated cellular responses. This review underscores the complex interplay between ERα/ß isoforms and the ECM, shedding light onto the potential therapeutic strategies targeting these interactions to improve breast cancer management.
RESUMO
Circulating microRNAs (miRNAs) possess significant roles in normal homeostasis and disease conditions, including cardiovascular diseases, fibrosis, inflammatory response, and cancer. Secreted miRNAs, via the membrane vesicles, actively communicate with extracellular matrix (ECM) components to affect cell-cell and cell-matrix interactions, thereby affecting matrix remodeling and metabolic pathways in the recipient cells. Matrix macromolecules regulate the expression of miRNAs, and in turn miRNAs have been identified as emerging mediators of matrix constituents, serving as appealing biomarkers for many pathophysiological processes. Therefore, the expression profile of certain miRNAs highlights the importance of their targeting in several aspects of human pathologies. In this chapter, we report molecular biology protocols to determine the effects of selected miRNAs on the expression and activity of matrix biomolecules.
Assuntos
MicroRNA Circulante , MicroRNAs , Neoplasias , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Proteoglicanas/metabolismo , Matriz Extracelular/metabolismo , Neoplasias/patologiaRESUMO
Cancer initiation and progression heavily rely on microenvironmental cues derived from various components of the niche including the extracellular matrix (ECM). ECM is a complex macromolecular network that governs cell functionality. Although the two-dimensional (2D) cell culture systems provide useful information at the molecular level and preclinical testing, they could not accurately represent the in vivo matrix microenvironmental architecture. Hence, it is no surprise that researchers in the last decade have focussed their efforts on establishing novel advanced in vitro culture models that mimic tumour and tissue-specific niches and interactions. These numerous three-dimensional (3D) culture systems that are now widely available, as well as those still under development, grant researchers with new, improved tools to study cancer progression and to explore innovative therapeutic options. Herein, we report on the emerging methods and cutting-edge technologies in 3D cell culture platforms and discuss their potential use in unveiling tumour microenvironmental cues, drug screening and personalized treatment.