Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Org Biomol Chem ; 22(4): 767-783, 2024 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-38167738

RESUMO

Among the eight different triazolopyrimidine isomers existing in nature, 1,2,4-triazolo[1,5-a]pyrimidine (TZP) is one of the most studied and used isomers in medicinal chemistry. For some years, our group has been involved in developing regioselective one-pot procedures for the synthesis of 2-amino-7-aryl-5-methyl- and 2-amino-5-aryl-7-methyl-TZPs of interest in the preparation of antiviral agents. In this work, taking advantage of a Biginelli-like multicomponent reaction (MCR), we report the identification of finely tunable conditions to regioselectively synthesize C-6 ester-substituted amino-TZP analogues, both in dihydro and oxidized forms. Indeed, the use of mild acidic conditions is strongly directed toward the regioselective synthesis of 5-aryl-7-methyl C-6-substituted TZP analogues, while the use of neutral ionic liquids shifted the regioselectivity towards 7-aryl-5-methyl derivatives. In addition, the novel synthesized scaffolds were functionalized at the C-2 position and evaluated for their antiviral activity against RNA viruses (influenza virus, flaviviruses, and SARS-CoV-2). Compounds 25 and 26 emerged as promising anti-flavivirus agents, showing activity in the low micromolar range.


Assuntos
Líquidos Iônicos , Isomerismo , Pirimidinas/química , Estereoisomerismo
2.
J Med Chem ; 66(10): 6498-6522, 2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-37134182

RESUMO

Synthetic lethality (SL) is an innovative strategy in targeted anticancer therapy that exploits tumor genetic vulnerabilities. This topic has come to the forefront in recent years, as witnessed by the increased number of publications since 2007. The first proof of concept for the effectiveness of SL was provided by the approval of poly(ADP-ribose)polymerase inhibitors, which exploit a SL interaction in BRCA-deficient cells, although their use is limited by resistance. Searching for additional SL interactions involving BRCA mutations, the DNA polymerase theta (POLθ) emerged as an exciting target. This review summarizes, for the first time, the POLθ polymerase and helicase inhibitors reported to date. Compounds are described focusing on chemical structure and biological activity. With the aim to enable further drug discovery efforts in interrogating POLθ as a target, we propose a plausible pharmacophore model for POLθ-pol inhibitors and provide a structural analysis of the known POLθ ligand binding sites.


Assuntos
DNA Polimerase Dirigida por DNA , Neoplasias , DNA Polimerase Dirigida por DNA/química , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , DNA Helicases/genética , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Mutações Sintéticas Letais , Neoplasias/tratamento farmacológico , DNA Polimerase teta
3.
Eur J Med Chem ; 252: 115283, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36965228

RESUMO

Dengue virus (DENV), a mosquito-borne flavivirus, continues to be a major public health threat in many countries and no approved antiviral therapeutics are available yet. In this work, we designed and synthesized a series of sulfonyl anthranilic acid (SAA) derivatives using a ligand-based scaffold morphing approach of the 2,1-benzothiazine 2,2-dioxide core, previously used by us to develop DENV polymerase inhibitors resulting devoid of any cell-based antiviral activity. Several derivatives based on the new SAA chemotype exhibited potent inhibition against DENV infection in the cell-based assay but did not inhibit DENV NS5 polymerase activity in the in vitro de novo initiation and elongation assays. Notably, best compounds 26 and 39 showed EC50 values in the range of 0.54-1.36 µM against cells infected with the four dengue serotypes (DENV-1-4). Time-of-drug-addition assay revealed that analogue 26 is a post-entry replication inhibitor that appears to be specific for cells of primate origin, implicating a host target with a high barrier to resistance. In conclusion, SAA derivatives offer a valuable starting point for developing effective Dengue antiviral therapeutics.


Assuntos
Vírus da Dengue , Dengue , Animais , Antivirais/farmacologia , Antivirais/uso terapêutico , Dengue/tratamento farmacológico , Sorogrupo , Replicação Viral
4.
Curr Med Chem ; 29(8): 1379-1407, 2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-34042030

RESUMO

Viruses are a continuing threat to global health. The lack or limited therapeutic armamentarium against some viral infections and increasing drug resistance issues make the search for new antiviral agents urgent. In recent years, a growing literature highlighted the use of triazolopyrimidine (TZP) heterocycles in the development of antiviral agents, with numerous compounds that showed potent antiviral activities against different RNA and DNA viruses. TZP core represents a privileged scaffold for achieving biologically active molecules, thanks to: i) the synthetic feasibility that allows to variously functionalize TZPs in the different positions of the nucleus, ii) the ability of TZP core to establish multiple interactions with the molecular target, and iii) its favorable pharmacokinetic properties. In the present review, after mentioning selected examples of TZP-based compounds with varied biological activities, we will focus on those antivirals that appeared in the literature in the last 10 years. Approaches used for their identification, the hit-to-lead studies, and the emerged structure-activity relationship will be described. A mention of the synthetic methodologies to prepare TZP nuclei will also be given. In addition, their mechanism of action, the binding mode within the biological target, and pharmacokinetic properties will be analyzed, highlighting the strengths and weaknesses of compounds based on the TZP scaffold, which is increasingly used in medicinal chemistry.


Assuntos
Viroses , Vírus , Antivirais/química , Antivirais/farmacologia , Química Farmacêutica , Humanos , Relação Estrutura-Atividade
5.
Pharmaceutics ; 14(11)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36365115

RESUMO

Acute myeloid leukemia (AML) is a heterogeneous hematopoietic malignancy whose prognosis is globally poor. In more than 60% of AML patients, the PI3K/AKTs/mTOR signaling pathway is aberrantly activated because of oncogenic driver alterations and further enhanced by chemotherapy as a mechanism of drug resistance. Against this backdrop, very recently we have started a multidisciplinary research project focused on AKT1 as a pharmacological target to identify novel anti-AML agents. Indeed, the serendipitous finding of the in-house compound T187 as an AKT1 inhibitor has paved the way to the rational identification of new active small molecules, among which T126 has emerged as the most interesting compound with IC50 = 1.99 ± 0.11 µM, ligand efficiency of 0.35, and a clear effect at low micromolar concentrations on growth inhibition and induction of apoptosis in AML cells. The collected results together with preliminary SAR data strongly indicate that the 5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidin-4(3H)-one derivative T126 is worthy of future biological experiments and medicinal chemistry efforts aimed at developing a novel chemical class of AKT1 inhibitors as anti-AML agents.

6.
Eur J Pharmacol ; 905: 174179, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-34004208

RESUMO

NS6740 is an α7 nicotinic acetylcholine receptor-selective partial agonist with low efficacy for channel activation, capable of promoting the stable conversion of the receptors to nonconducting (desensitized) states that can be reactivated with the application of positive allosteric modulators (PAMs). In spite of its low efficacy for channel activation, NS6740 is an effective activator of the cholinergic anti-inflammatory pathway. We observed that the concentration-response relationships for channel activation, both when applied alone and when co-applied with the PAM PNU-120596 are inverted-U shaped with inhibitory/desensitizing activities dominant at high concentrations. We evaluated the potential importance of recently identified binding sites for allosteric activators and tested the hypotheses that the stable desensitization produced by NS6740 may be due to binding to these sites. Our experiments were guided by molecular modeling of NS6740 binding to both the allosteric and orthosteric activation sites on the receptor. Our results indicate that with α7C190A mutants, which have compromised orthosteric activation sites, NS6740 may work at the allosteric activation sites to promote transient PAM-dependent currents but not the stable desensitization seen with wild-type α7 receptors. Modeling NS6740 in the orthosteric binding sites identified S36 as an important residue for NS6740 binding and predicted that an S36V mutation would limit NS6740 activity. The efficacy of NS6740 for α7S36V receptors was reduced to zero, and applications of the compound to α7S36V receptors failed to induce the desensitization observed with wild-type receptors. The results indicate that the unique properties of NS6740 are due primarily to binding at the sites for orthosteric agonists.


Assuntos
Compostos Azabicíclicos/farmacologia , Furanos/farmacologia , Agonistas Nicotínicos/farmacologia , Serina/química , Serina/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Acetilcolina/agonistas , Acetilcolina/antagonistas & inibidores , Regulação Alostérica , Animais , Compostos Azabicíclicos/agonistas , Sítios de Ligação , Agonismo Parcial de Drogas , Furanos/agonistas , Isoxazóis/farmacologia , Simulação de Acoplamento Molecular , Compostos de Fenilureia/farmacologia , Domínios Proteicos , Xenopus laevis/genética , Receptor Nicotínico de Acetilcolina alfa7/agonistas , Receptor Nicotínico de Acetilcolina alfa7/genética
7.
Eur J Med Chem ; 221: 113494, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-33962311

RESUMO

In the search for new anti-influenza virus (IV) compounds, we have identified the 1,2,4-triazolo[1,5-a]pyrimidine (TZP) as a very suitable scaffold to obtain compounds able to disrupt IV RNA-dependent RNA polymerase (RdRP) PA-PB1 subunits heterodimerization. In this work, in order to acquire further SAR insights for this class of compounds and identify more potent derivatives, we designed and synthesized additional series of analogues to investigate the role of the substituents around the TZP core. To this aim, we developed four facile and efficient one-step procedures for the synthesis of 5-phenyl-, 6-phenyl- and 7-phenyl-2-amino-[1,2,4]triazolo[1,5-a]pyrimidines, and 2-amino-5-phenyl-[1,2,4]triazolo[1,5-a]pyrimidin-7-ol. Two analogues having the ethyl carboxylate moiety at the C-2 position of the TZP were also prepared in good yields. Then, the scaffolds herein synthesized and two previous scaffolds were functionalized and evaluated for their anti-IAV activity, leading to the identification of compound 22 that showed both anti-PA-PB1 (IC50 = 19.5 µM) and anti-IAV activity (EC50 = 16 µM) at non-toxic concentrations, thus resulting among the most active TZP derivatives reported to date by us. A selection of the synthesized compounds, along with a set of in-house available analogues, was also tested against SARS-CoV-2. The most promising compound 49 from this series displayed an EC50 value of 34.47 µM, highlighting the potential of the TPZ scaffold in the search for anti-CoV agents.


Assuntos
Antivirais/farmacologia , Multimerização Proteica/efeitos dos fármacos , Pirimidinas/farmacologia , RNA Polimerase Dependente de RNA/antagonistas & inibidores , Triazóis/farmacologia , Proteínas Virais/antagonistas & inibidores , Animais , Antivirais/síntese química , Chlorocebus aethiops , Cães , Desenho de Fármacos , Células HEK293 , Humanos , Vírus da Influenza A/efeitos dos fármacos , Células Madin Darby de Rim Canino , Testes de Sensibilidade Microbiana , Pirimidinas/síntese química , SARS-CoV-2/efeitos dos fármacos , Triazóis/síntese química , Células Vero
8.
Eur J Med Chem ; 209: 112944, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33328103

RESUMO

Influenza viruses (Flu) are responsible for seasonal epidemics causing high rates of morbidity, which can dramatically increase during severe pandemic outbreaks. Antiviral drugs are an indispensable weapon to treat infected people and reduce the impact on human health, nevertheless anti-Flu armamentarium still remains inadequate. In search for new anti-Flu drugs, our group has focused on viral RNA-dependent RNA polymerase (RdRP) developing disruptors of PA-PB1 subunits interface with the best compounds characterized by cycloheptathiophene-3-carboxamide and 1,2,4-triazolo[1,5-a]pyrimidine-2-carboxamide scaffolds. By merging these moieties, two very interesting hybrid compounds were recently identified, starting from which, in this paper, a series of analogues were designed and synthesized. In particular, a thorough exploration of the cycloheptathiophene-3-carboxamide moiety led to acquire important SAR insight and identify new active compounds showing both the ability to inhibit PA-PB1 interaction and viral replication in the micromolar range and at non-toxic concentrations. For few compounds, the ability to efficiently inhibit PA-PB1 subunits interaction did not translate into anti-Flu activity. Chemical/physical properties were investigated for a couple of compounds suggesting that the low solubility of compound 14, due to a strong crystal lattice, may have impaired its antiviral activity. Finally, computational studies performed on compound 23, in which the phenyl ring suitably replaced the cycloheptathiophene, suggested that, in addition to hydrophobic interactions, H-bonds enhanced its binding within the PAC cavity.


Assuntos
Antivirais/síntese química , Antivirais/farmacologia , Vírus da Influenza A/efeitos dos fármacos , Pirimidinas/química , RNA Polimerase Dependente de RNA/antagonistas & inibidores , Triazóis/química , Antivirais/química , Humanos , Vírus da Influenza A/enzimologia , Simulação de Acoplamento Molecular , Ligação Proteica
9.
Eur J Med Chem ; 205: 112669, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32810771

RESUMO

The α7 nicotinic acetylcholine receptor (nAChR) silent agonists, able to induce receptor desensitization and promote the α7 metabotropic function, are emerging as new promising therapeutic anti-inflammatory agents. Herein, we report the structure-activity relationship investigation of the archetypal silent agonist NS6740 (1,4-diazabicyclo[3.2.2]nonan-4-yl(5-(3-(trifluoromethyl)-phenyl)-furan-2-yl)methanone) (1) to elucidate the ligand-receptor interactions responsible for the α7 silent activation. In this study, NS6740 fragments 11-16 and analogs 17-32 were designed, synthesized, and assayed on human α7 nAChRs expressed in Xenopus laevis oocytes with two-electrode voltage clamping experiments. All together the structural portions of NS6740 were critical to engender its peculiar activity profile. The diazabicyclic nucleus was essential but not sufficient for inducing α7 silent activation. The central hydrogen-bond acceptor core and the aromatic moiety were crucial for promoting prolonged α7 receptor binding and sustained desensitization. Compounds 13 and 17 were efficacious partial agonists. Compounds 12, 21, 23-26, and 30 strongly desensitized α7 nAChR and therefore may be of interest for additional investigation of inflammation responses. We gained key structural information useful for further silent agonist development.


Assuntos
Compostos Azabicíclicos/farmacologia , Desenho de Fármacos , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Furanos/farmacologia , Receptor Nicotínico de Acetilcolina alfa7/agonistas , Animais , Compostos Azabicíclicos/química , Técnicas de Química Sintética , Furanos/química , Humanos , Ligação de Hidrogênio , Ligantes , Relação Estrutura-Atividade , Xenopus laevis , Receptor Nicotínico de Acetilcolina alfa7/metabolismo
10.
ChemMedChem ; 12(16): 1335-1348, 2017 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-28494140

RESUMO

Compound 11 (3-(benzyloxy)-1'-methyl-1'-azonia-4H-1'-azaspiro[isoxazole-5,3'-bicyclo[2.2.2]octane] iodide) was selected from a previous set of nicotinic ligands as a suitable model compound for the design of new silent agonists of α7 nicotinic acetylcholine receptors (nAChRs). Silent agonists evoke little or no channel activation but can induce the α7 desensitized Ds state, which is sensitive to a type II positive allosteric modulator, such as PNU-120596. Introduction of meta substituents into the benzyloxy moiety of 11 led to two sets of tertiary amines and quaternary ammonium salts based on the spirocyclic quinuclidinyl-Δ2 -isoxazoline scaffold. Electrophysiological assays performed on Xenopus laevis oocytes expressing human α7 nAChRs highlighted four compounds that are endowed with a significant silent-agonism profile. Structure-activity relationships of this group of analogues provided evidence of the crucial role of the positive charge at the quaternary quinuclidine nitrogen atom. Moreover, the present study indicates that meta substituents, in particular halogens, on the benzyloxy substructure direct specific interactions that stabilize a desensitized conformational state of the receptor and induce silent activity.


Assuntos
Isoxazóis/química , Agonistas Nicotínicos/síntese química , Quinuclidinas/química , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Animais , Desenho de Fármacos , Humanos , Isoxazóis/síntese química , Isoxazóis/farmacologia , Agonistas Nicotínicos/química , Agonistas Nicotínicos/farmacologia , Oócitos/efeitos dos fármacos , Oócitos/fisiologia , Quinuclidinas/síntese química , Quinuclidinas/farmacologia , Compostos de Espiro/química , Relação Estrutura-Atividade , Xenopus laevis/crescimento & desenvolvimento , Xenopus laevis/fisiologia , Receptor Nicotínico de Acetilcolina alfa7/agonistas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa