Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Fetal Diagn Ther ; 48(6): 472-478, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34111873

RESUMO

BACKGROUND: The inherent morbidity associated with fetal ovine models of myelomeningocele (MMC) has created challenges for long-term survival of lambs. We aimed to develop a fetal ovine surgical spinal exposure model which could be used to evaluate long-term safety after direct spinal cord application of novel therapeutics for augmentation of in utero MMC repair. METHODS: At gestational age (GA) 100-106, fetal lambs underwent surgical intervention. Laminectomy of L5-L6 was performed, dura was removed, and an experimental product was directly applied to the spinal cord. Paraspinal muscles and skin were closed and the fetus was returned to the uterus. Lambs were delivered via cesarean section at GA 140-142. Lambs were survived for 3 months with regular evaluation of motor function by the sheep locomotor rating scale. Spinal angulation was evaluated by magnetic resonance imaging at 2 weeks and 3 months. RESULTS: Five fetal surgical intervention lambs and 6 control lambs who did not undergo surgical intervention were included. All lambs survived to the study endpoint of 3 months. No lambs had motor function abnormalities or increased spinal angulation. CONCLUSION: This model allows for long-term survival after fetal spinal cord exposure with product application directly onto the spinal cord.


Assuntos
Cesárea , Meningomielocele , Animais , Modelos Animais de Doenças , Feminino , Feto , Meningomielocele/diagnóstico por imagem , Meningomielocele/cirurgia , Gravidez , Ovinos , Medula Espinal/diagnóstico por imagem
2.
Fetal Diagn Ther ; 47(6): 507-513, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32097922

RESUMO

INTRODUCTION: The ovine model is the gold standard large animal model of myelomeningocele (MMC); however, it has a high rate of fetal loss. We reviewed our experience with the model to determine risk factors for fetal loss. METHODS: We performed a retrospective review from 2009 to 2018 to identify operative factors associated with fetal loss (early fetal demise, abortion, or stillbirth). Operative risk factors included gestational age at operation, operative time, reduction of multiple gestations, amount of replaced amniotic fluid, ambient temperature, and method of delivery. RESULTS: MMC defects were created in 232 lambs with an overall survival rate of 43%. Of the 128 fetuses that died, 53 (42%) had demise prior to repair, 61 (48%) aborted, and 14 (11%) were stillborn. Selective reduction of multiple gestations in the same uterine horn was associated with increased fetal demise (OR 3.03 [95% CI 1.29-7.05], p = 0.01). Later gestational age at MMC repair and Cesarean delivery were associated with decreased abortion/stillbirth (OR 0.90 [95% CI 0.83-0.90], p = 0.03, and OR 0.37 [95% CI 0.16-0.31], p = 0.02), respectively. CONCLUSION: Avoiding selective reduction, repairing MMC later in gestation, and performing Cesarean delivery decreases the rate of fetal loss in the ovine MMC model.


Assuntos
Modelos Animais de Doenças , Morte Fetal/etiologia , Meningomielocele/embriologia , Meningomielocele/cirurgia , Ovinos , Aborto Espontâneo/epidemiologia , Animais , Cesárea , Feminino , Morte Fetal/prevenção & controle , Idade Gestacional , Meningomielocele/mortalidade , Gravidez , Estudos Retrospectivos , Fatores de Risco , Natimorto/epidemiologia
3.
Fetal Diagn Ther ; 39(3): 179-85, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26159889

RESUMO

INTRODUCTION: Fetal amniotic membranes (FM) have been shown to preserve spinal cord histology in the fetal sheep model of myelomeningocele (MMC). This study compares the effectiveness of placenta-derived mesenchymal stromal cells (PMSCs) from early-gestation versus term-gestation placenta to augment FM repair to improve distal motor function in a sheep model. METHODS: Fetal lambs (n = 4) underwent surgical MMC creation followed by repair with FM patch with term-gestation PMSCs (n = 1), FM with early-gestation PMSCs (n = 1), FM only (n = 1), and skin closure only (n = 1). Histopathology and motor assessment was performed. RESULTS: Histopathologic analysis demonstrated increased preservation of spinal cord architecture and large neurons in the lamb repaired with early-gestation cells compared to all others. Lambs repaired with skin closure only, FM alone, and term-gestation PMSCs exhibited extremely limited distal motor function; the lamb repaired with early-gestation PMSCs was capable of normal ambulation. DISCUSSION: This pilot study is the first in vivo comparison of different gestational-age placenta-derived stromal cells for repair in the fetal sheep MMC model. The preservation of large neurons and markedly improved motor function in the lamb repaired with early-gestation cells suggest that early-gestation placental stromal cells may exhibit unique properties that augment in utero MMC repair to improve paralysis.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos/métodos , Feto/cirurgia , Meningomielocele/cirurgia , Placenta/citologia , Ovinos , Animais , Modelos Animais de Doenças , Feminino , Feto/patologia , Idade Gestacional , Meningomielocele/patologia , Atividade Motora , Gravidez , Regeneração , Células Estromais/transplante , Fatores de Tempo , Resultado do Tratamento
4.
Med Res Rev ; 33(5): 911-33, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22886693

RESUMO

Microvascular barrier dysfunction is a serious problem that occurs in many inflammatory conditions, including sepsis, trauma, ischemia-reperfusion injury, cardiovascular disease, and diabetes. Barrier dysfunction permits extravasation of serum components into the surrounding tissue, leading to edema formation and organ failure. The basis for microvascular barrier dysfunction is hyperpermeability at endothelial cell-cell junctions. Endothelial hyperpermeability is increased by actomyosin contractile activity in response to phosphorylation of myosin light chain by myosin light chain kinase (MLCK). MLCK-dependent endothelial hyperpermeability occurs in response to inflammatory mediators (e.g., activated neutrophils, thrombin, histamine, tumor necrosis factor alpha, etc.), through multiple cell signaling pathways and signaling molecules (e.g., Ca(++) , protein kinase C, Src kinase, nitric oxide synthase, etc.). Other signaling molecules protect against MLCK-dependent hyperpermeability (e.g., sphingosine-1-phosphate or cAMP). In addition, individual MLCK isoforms play specific roles in endothelial barrier dysfunction, suggesting that isoform-specific inhibitors could be useful for treating inflammatory disorders and preventing multiple organ failure. Because endothelial barrier dysfunction depends upon signaling through MLCK in many instances, MLCK-dependent signaling comprises multiple potential therapeutic targets for preventing edema formation and multiple organ failure. The following review is a discussion of MLCK-dependent mechanisms and cell signaling events that mediate endothelial hyperpermeability.


Assuntos
Endotélio/enzimologia , Quinase de Cadeia Leve de Miosina/metabolismo , Transdução de Sinais , Animais , Endotélio/efeitos dos fármacos , Endotélio/fisiopatologia , Humanos , Terapia de Alvo Molecular , Quinase de Cadeia Leve de Miosina/química , Permeabilidade/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Transdução de Sinais/efeitos dos fármacos
5.
J Pediatr Surg ; 58(5): 964-970, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36797111

RESUMO

INTRODUCTION: Congenital diaphragmatic hernia (CDH) repair is an area of active research. Large defects requiring patches have a hernia recurrence rate of up to 50%. We designed a biodegradable polyurethane (PU)-based elastic patch that matches the mechanical properties of native diaphragm muscle. We compared the PU patch to a non-biodegradable Gore-Tex™ (polytetrafluoroethylene) patch. METHODS: The biodegradable polyurethane was synthesized from polycaprolactone, hexadiisocyanate and putrescine, and then processed into fibrous PU patches by electrospinning. Rats underwent 4 mm diaphragmatic hernia (DH) creation via laparotomy followed by immediate repair with Gore-Tex™ (n = 6) or PU (n = 6) patches. Six rats underwent sham laparotomy without DH creation/repair. Diaphragm function was evaluated by fluoroscopy at 1 and 4 weeks. At 4 weeks, animals underwent gross inspection for recurrence and histologic evaluation for inflammatory reaction to the patch materials. RESULTS: There were no hernia recurrences in either cohort. Gore-Tex™ had limited diaphragm rise compared to sham at 4 weeks (1.3 mm vs 2.9 mm, p = 0.003), but no difference was found between PU and sham (1.7 mm vs 2.9 mm, p = 0.09). There were no differences between PU and Gore-Tex™ at any time point. Both patches formed an inflammatory capsule, with similar thicknesses between cohorts on the abdominal (Gore-Tex™ 0.07 mm vs. PU 0.13 mm, p = 0.39) and thoracic (Gore-Tex™ 0.3 mm vs. PU 0.6 mm, p = 0.09) sides. CONCLUSION: The biodegradable PU patch allowed for similar diaphragmatic excursion compared to control animals. There were similar inflammatory responses to both patches. Further work is needed to evaluate long-term functional outcomes and further optimize the properties of the novel PU patch in vitro and in vivo. LEVEL OF EVIDENCE: Level II, Prospective Comparative Study.


Assuntos
Hérnias Diafragmáticas Congênitas , Ratos , Animais , Hérnias Diafragmáticas Congênitas/cirurgia , Projetos Piloto , Poliuretanos , Estudos Prospectivos , Diafragma/cirurgia , Estudos Retrospectivos
6.
J Pediatr Surg ; 57(4): 753-758, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34217509

RESUMO

BACKGROUND: While fetal repair of myelomeningocele (MMC) revolutionized management, many children are still unable to walk independently. Preclinical studies demonstrated that research-grade placental mesenchymal stromal cells (PMSCs) prevent paralysis in fetal ovine MMC, however this had not been replicated with clinical-grade cells that could be used in an upcoming human clinical trial. We tested clinical-grade PMSCs seeded on an extracellular matrix (PMSC-ECM) in the gold standard fetal ovine model of MMC. METHODS: Thirty-five ovine fetuses underwent MMC defect creation at a median of 76 days gestational age, and defect repair at 101 days gestational age with application of clinical-grade PMSC-ECM (3 × 105 cells/cm2, n = 12 fetuses), research-grade PMSC-ECM (3 × 105 cells/cm2, three cell lines with n = 6 (Group 1), n = 6 (Group 2), and n = 3 (Group 3) fetuses, respectively) or ECM without PMSCs (n = 8 fetuses). Three normal lambs underwent no surgical interventions. The primary outcome was motor function measured by the Sheep Locomotor Rating scale (SLR, range 0: complete paralysis to 15: normal ambulation) at 24 h of life. Correlation of lumbar spine large neuron density with SLR was evaluated. RESULTS: Clinical-grade PMSC-ECM lambs had significantly better motor function than ECM-only lambs (SLR 14.5 vs. 6.5, p = 0.04) and were similar to normal lambs (14.5 vs. 15, p = 0.2) and research-grade PMSC-ECM lambs (Group 1: 14.5 vs. 15, p = 0.63; Group 2: 14.5 vs. 14.5, p = 0.86; Group 3: 14.5 vs. 15, p = 0.50). Lumbar spine large neuron density was strongly correlated with motor function (r = 0.753, p<0.001). CONCLUSIONS: Clinical-grade placental mesenchymal stromal cells seeded on an extracellular matrix rescued ambulation in a fetal ovine myelomeningocele model. Lumbar spine large neuron density correlated with motor function, suggesting a neuroprotective effect of the PMSC-ECM in prevention of paralysis. A first-in-human clinical trial of PMSCs in human fetal myelomeningocele repair is underway.


Assuntos
Meningomielocele , Células-Tronco Mesenquimais , Animais , Feminino , Feto/cirurgia , Idade Gestacional , Humanos , Meningomielocele/cirurgia , Placenta , Gravidez , Ovinos
7.
J Pediatr Surg ; 57(5): 941-948, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35093254

RESUMO

INTRODUCTION: Fetal myelomeningocele (MMC) repair improves lower extremity motor function. We have previously demonstrated that augmentation of fetal MMC repair with placental mesenchymal stromal cells (PMSCs) seeded on extracellular matrix (PMSC-ECM) further improves motor function in the ovine model. However, little progress has been made in improving bowel and bladder function, with many patients suffering from neurogenic bowel and bladder. We hypothesized that fetal MMC repair with PMSC-ECM would also improve bowel and bladder function. METHODS: MMC defects were surgically created in twelve ovine fetuses at median gestational age (GA) 73 days, followed by defect repair at GA101 with PMSC-ECM. Fetuses were delivered at GA141. Primary bladder function outcomes were voiding posture and void volumes. Primary bowel function outcome was anorectal manometry findings including resting anal pressure and presence of rectoanal inhibitory reflex (RAIR). Secondary outcomes were anorectal and bladder detrusor muscle thickness. PMSC-ECM lambs were compared to normal lambs (n = 3). RESULTS: Eighty percent of PMSC-ECM lambs displayed normal voiding posture compared to 100% of normal lambs (p = 1). Void volumes were similar (PMSC-ECM 6.1 ml/kg vs. normal 8.8 ml/kg, p = 0.4). Resting mean anal pressures were similar between cohorts (27.0 mmHg PMSC-ECM vs. normal 23.5 mmHg, p = 0.57). RAIR was present in 3/5 PMSC-ECM lambs that underwent anorectal manometry and all normal lambs (p = 0.46). Thicknesses of anal sphincter complex, rectal wall muscles, and bladder detrusor muscles were similar between cohorts. CONCLUSION: Ovine fetal MMC repair augmented with PMSC-ECM results in near-normal bowel and bladder function. Further work is needed to evaluate these outcomes in human patients.


Assuntos
Meningomielocele , Células-Tronco Mesenquimais , Animais , Feminino , Feto/cirurgia , Humanos , Meningomielocele/complicações , Meningomielocele/cirurgia , Placenta , Gravidez , Ovinos , Carneiro Doméstico , Bexiga Urinária/cirurgia
8.
Sci Rep ; 11(1): 1398, 2021 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-33446868

RESUMO

Hirschsprung disease (HD) is a congenital disorder in the distal colon that is characterized by the absence of nerve ganglion cells in the diseased tissue. The primary treatment for HD is surgical intervention with resection of the aganglionic bowel. The accurate identification of the aganglionic segment depends on the histologic evaluation of multiple biopsies to determine the absence of ganglion cells in the tissue, which can be a time-consuming procedure. We investigate the feasibility of using a combination of label-free optical modalities, second harmonic generation (SHG); two-photon excitation autofluorescence (2PAF); and Raman spectroscopy (RS), to accurately locate and identify ganglion cells in murine intestinal tissue without the use of exogenous labels or dyes. We show that the image contrast provided by SHG and 2PAF signals allows for the visualization of the overall tissue morphology and localization of regions that may contain ganglion cells, while RS provides detailed multiplexed molecular information that can be used to accurately identify specific ganglion cells. Support vector machine, principal component analysis and linear discriminant analysis classification models were applied to the hyperspectral Raman data and showed that ganglion cells can be identified with a classification accuracy higher than 95%. Our findings suggest that a near real-time intraoperative histology method can be developed using these three optical modalities together that can aid pathologists and surgeons in rapid, accurate identification of ganglion cells to guide surgical decisions with minimal human intervention.


Assuntos
Colo/diagnóstico por imagem , Colo/inervação , Doença de Hirschsprung/diagnóstico por imagem , Microscopia , Animais , Camundongos
9.
Biomed Res Int ; 2021: 2180883, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34423032

RESUMO

INTRODUCTION: Translational models of myelomeningocele (MMC) are needed to test novel in utero interventions. An ideal animal model for MMC has locomotor function at birth and is low cost enough to allow for high throughput. The rat MMC model is limited by immature locomotor function at birth. The ovine MMC model is a costly surgical model. Guinea pigs are uniquely suited for an MMC model being a small animal model with locomotor function at birth. We aimed to develop a retinoic acid (RA) model of MMC in the guinea pig and to evaluate if pregnant guinea pigs could tolerate uterine manipulation. METHODS: Time-mated Dunkin Hartley guinea pig dams were dosed with 60 mg/kg of RA between gestation age (GA) 12 and 15 days in the development of an RA model. Fetuses were grossly evaluated for MMC lesions at Cesarean section after GA 31 days. Evaluation of the ability of pregnant guinea pig dams to tolerate uterine surgical intervention was performed by hysterotomy of a separated group of time-mated guinea pigs at GA 45, 50, and 55. RESULTS: Forty-two pregnant guinea pigs were dosed with RA, with a total of 189 fetuses. The fetal demise rate was 38% (n = 71). A total of 118 fetuses were viable, 83% (n = 98) were normal fetuses, 8% (n = 10) had a neural tube defect, and 8% (n = 10) had a hematoma or other anomalies. No fetuses developed an MMC defect. None of the fetuses that underwent hysterotomy survived to term. CONCLUSION: RA dosed at 60 mg/kg in guinea pigs between GA 12 and 15 did not result in MMC. Dunkin Hartley guinea pigs did not tolerate a hysterotomy near term in our surgical model. Further work is needed to determine if MMC can be induced in guinea pigs with alternate RA dosing.


Assuntos
Doenças Fetais/patologia , Histerotomia/efeitos adversos , Meningomielocele/patologia , Tretinoína/toxicidade , Animais , Cesárea/efeitos adversos , Modelos Animais de Doenças , Feminino , Doenças Fetais/induzido quimicamente , Idade Gestacional , Cobaias , Humanos , Meningomielocele/induzido quimicamente , Gravidez
10.
Lab Anim ; 55(2): 170-176, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33108940

RESUMO

Q fever is a worldwide zoonosis caused by Coxiella burnetii that can lead to abortion, endocarditis, and death in humans. Researchers utilizing parturient domestic ruminants, including sheep, have an increased risk of occupational exposure. This study evaluated the effectiveness of our screening protocol in eliminating C. burnetii-positive sheep from our facility. From August 2010 to May 2018, all ewes (N = 306) and select lambs (N = 272; ovis aries) were screened twice for C. burnetii utilizing a serum Phase I and Phase II antibody immunofluorescence assay (IFA). The first screen was performed by the vendor prior to breeding, and the second screen was performed on arrival to the research facility. Ewes that were positive on arrival screening were quarantined and retested using repeat IFA serology, enzyme-linked immunosorbent assay, buffy coat polymerase chain reaction (PCR), and amniotic fluid PCR. The overall individual seroprevalence of C. burnetii in the flocks tested by the vendor was 14.2%. Ewes with negative Phase I and Phase II IFA results were selected for transport to the research facility. Upon arrival to the facility, two (0.7%) ewes had positive Phase I IFA results. Repeat testing demonstrated seropositivity in one of these two ewes, though amniotic fluid PCR was negative in both. The repeat seropositive ewe was euthanized prior to use in a research protocol. No Q fever was reported among husbandry, laboratory or veterinary staff during the study period. Serologic testing for C. burnetii with IFA prior to transport and following arrival to a research facility limits potential exposure to research staff.


Assuntos
Monitoramento Epidemiológico/veterinária , Programas de Rastreamento/veterinária , Doenças Profissionais/prevenção & controle , Febre Q/prevenção & controle , Doenças dos Ovinos/epidemiologia , Animais , California/epidemiologia , Ensaio de Imunoadsorção Enzimática/veterinária , Imunofluorescência/veterinária , Humanos , Programas de Rastreamento/estatística & dados numéricos , Reação em Cadeia da Polimerase/veterinária , Vigilância da População/métodos , Prevalência , Medição de Risco/métodos , Estudos Soroepidemiológicos , Ovinos , Carneiro Doméstico
11.
Reprod Sci ; 27(10): 1960-1966, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32542541

RESUMO

Current intrapartum fetal oxygen saturation (SaO2) monitoring methodologies are limited, mostly consisting of fetal heart rate monitoring which is a poor predictor of fetal hypoxia. A newly developed transabdominal fetal oximeter (TFO) may be able to determine fetal SaO2 non-invasively. This study is to validate a novel TFO in determining fetal SaO2 in a hypoxic fetal lamb model. Fetal hypoxia was induced in at-term pregnant ewe by placing an aortic occlusion balloon infrarenally and inflating it in a stepwise fashion to decrease blood flow to the uterine artery. The inflation was held at each step for 10 min, and fetal arterial blood gases (ABGs) were intermittently recorded from the fetal carotid artery. The balloon catheter was deflated when fetal SaO2 fell below 15%, and the fetus was recovered. A total of three desaturation experiments were performed. The average fetal SpO2 reported by the TFO was derived at each hypoxic level and correlated with the ABG measures. Fetal SaO2 from the ABGs ranged from 10.5 to 66%. The TFO SpO2 correlated with the ABG fetal SaO2 (r-squared = 0.856) with no significant differences (p > 0.5). The fetal SpO2 measurements from TFO were significantly different than the maternal SpO2 (p < 0.01), which suggests that the transcutaneous measurements are penetrating through the maternal abdomen sufficiently and are expressing the underlying fetal tissue physiology. The recently developed TFO system was able to non-invasively report the fetal SpO2, which showed strong correlation with ABG measures and showed no significant differences.


Assuntos
Hipóxia Fetal/fisiopatologia , Oximetria/métodos , Animais , Gasometria , Modelos Animais de Doenças , Feminino , Gravidez , Ovinos
12.
J Pediatr Surg ; 55(9): 1941-1946, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31672407

RESUMO

BACKGROUND: We determined whether in vitro potency assays inform which placental mesenchymal stromal cell (PMSC) lines produce high rates of ambulation following in utero treatment of myelomeningocele in an ovine model. METHODS: PMSC lines were created following explant culture of three early-gestation human placentas. In vitro neuroprotection was assessed with a neuronal apoptosis model. In vivo, myelomeningocele defects were created in 28 fetuses and repaired with PMSCs at 3 × 105 cells/cm2 of scaffold from Line A (n = 6), Line B (n = 7) and Line C (n = 5) and compared to no PMSCs (n = 10). Ambulation was scored as ≥13 on the Sheep Locomotor Rating Scale. RESULTS: In vitro, Line A and B had higher neuroprotective capability than no PMSCs (1.7 and 1.8 respectively vs 1, p = 0.02, ANOVA). In vivo, Line A and B had higher large neuron densities than no PMSCs (25.2 and 27.9 respectively vs 4.8, p = 0.03, ANOVA). Line C did not have higher neuroprotection or larger neuron density than no PMSCs. In vivo, Line A and B had ambulation rates of 83% and 71%, respectively, compared to 60% with Line C and 20% with no PMSCs. CONCLUSION: The in vitro neuroprotection assay will facilitate selection of optimal PMSC lines for clinical use. LEVEL OF EVIDENCE: n/a. TYPE OF STUDY: Basic science.


Assuntos
Terapias Fetais/métodos , Meningomielocele/cirurgia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Placenta/citologia , Animais , Linhagem Celular , Feminino , Humanos , Neuroproteção , Gravidez , Ovinos
13.
Expert Rev Mol Med ; 11: e19, 2009 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-19563700

RESUMO

Endothelial hyperpermeability is a significant problem in vascular inflammation associated with trauma, ischaemia-reperfusion injury, sepsis, adult respiratory distress syndrome, diabetes, thrombosis and cancer. An important mechanism underlying this process is increased paracellular leakage of plasma fluid and protein. Inflammatory stimuli such as histamine, thrombin, vascular endothelial growth factor and activated neutrophils can cause dissociation of cell-cell junctions between endothelial cells as well as cytoskeleton contraction, leading to a widened intercellular space that facilitates transendothelial flux. Such structural changes initiate with agonist-receptor binding, followed by activation of intracellular signalling molecules including calcium, protein kinase C, tyrosine kinases, myosin light chain kinase, and small Rho-GTPases; these kinases and GTPases then phosphorylate or alter the conformation of different subcellular components that control cell-cell adhesion, resulting in paracellular hypermeability. Targeting key signalling molecules that mediate endothelial-junction-cytoskeleton dissociation demonstrates a therapeutic potential to improve vascular barrier function during inflammatory injury.


Assuntos
Permeabilidade Capilar/fisiologia , Endotélio Vascular/metabolismo , Inflamação/metabolismo , Inflamação/fisiopatologia , Animais , Citoesqueleto/metabolismo , Humanos , Junções Intercelulares/metabolismo , Modelos Biológicos
14.
Opt Express ; 17(2): 894-905, 2009 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-19158904

RESUMO

The potential of NADH autofluorescence as an in vivo intrinsic optical signature to monitor tissue metabolism is well recognized and supported by experimental results mainly in animal models. In this work, we propose a non-contact implementation of this method using large area excitation and employing a normalization method to account for non-metabolic signal changes. Proof of principle in vivo experiments were carried out using an autofluorescence imaging experimental system and a rat renal ischemia model. A hand-held fiber-optic probe was utilized to test the ability of the signal normalization method to address operational conditions associated with the translation of this method to a clinical setting. Preliminary pre-clinical in vivo test of the probe system was carried out using the same rat model.


Assuntos
Isquemia/complicações , Rim/irrigação sanguínea , Rim/patologia , Fenômenos Ópticos , Traumatismo por Reperfusão/complicações , Análise Espectral/instrumentação , Análise Espectral/métodos , Análise de Variância , Animais , Fluorescência , Masculino , Fibras Ópticas , Ratos , Ratos Wistar , Reprodutibilidade dos Testes , Sus scrofa , Fatores de Tempo
15.
J Biomed Opt ; 14(2): 020505, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19405710

RESUMO

The use of reduced nicotinamide adenine dinucleotide (NADH) fluorescence to gain metabolic information on kidneys in response to an alteration in oxygen availability has previously been experimentally demonstrated, but signal quantification has not, to date, been addressed. In this work the relative contribution to rat kidney autofluorescence of the capsule versus cortex under ultraviolet excitation is determined from experimental results obtained using autofluorescence microscopy and a suitable mathematical model. The results allow for a quantitative assessment of the relative contribution of the signal originating in the metabolically active cortex as a function of capsule thickness for different wavelengths.


Assuntos
Cápsula Glomerular/metabolismo , Córtex Renal/metabolismo , NAD/análise , Espectrometria de Fluorescência/métodos , Algoritmos , Animais , Técnicas In Vitro , Ratos , Ratos Endogâmicos Lew , Ratos Endogâmicos WF , Ratos Sprague-Dawley , Distribuição Tecidual , Raios Ultravioleta
16.
Microbiol Mol Biol Rev ; 67(1): 66-85, table of contents, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12626684

RESUMO

Mechanosensitive (MS) channels that provide protection against hypoosmotic shock are found in the membranes of organisms from the three domains of life: bacteria, archaea, and eucarya. Two families of ubiquitous MS channels are recognized, and these have been designated the MscL and MscS families. A high-resolution X-ray crystallographic structure is available for a member of the MscL family, and extensive molecular genetic, biophysical, and biochemical studies conducted in many laboratories have allowed postulation of a gating mechanism allowing the interconversion of a tightly closed state and an open state that controls transmembrane ion and metabolite fluxes. In contrast to the MscL channel proteins, which are of uniform topology, the much larger MscS family includes protein members with topologies that are predicted to vary from 3 to 11 alpha-helical transmembrane segments (TMSs) per polypeptide chain. Sequence analyses reveal that the three C-terminal TMSs of MscS channel proteins are conserved among family members and that the third of these three TMSs exhibits a 20-residue motif that is shared by the channel-forming TMS (TMS 1) of the MscL proteins. We propose that this C-terminal TMS in MscS family homologues serves as the channel-forming helix in a homooligomeric structure. The presence of a conserved residue pattern for the putative channel-forming TMSs in the MscL and MscS family proteins suggests a common structural organization, gating mechanism, and evolutionary origin.


Assuntos
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Canais Iônicos/química , Canais Iônicos/metabolismo , Mecanotransdução Celular , Filogenia , Sequência de Aminoácidos , Sequência Conservada , Proteínas de Escherichia coli/genética , Canais Iônicos/genética , Modelos Moleculares , Dados de Sequência Molecular , Família Multigênica
17.
Opt Express ; 16(7): 4930-44, 2008 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-18542592

RESUMO

We explore a method to quantitatively assess the ability of in vivo autofluorescence as a means to quantify the progression of longer periods of renal warm ischemia and reperfusion in a rat model. The method employs in vivo monitoring of tissue autofluorescence arising mainly from NADH as a means to probe the organ's function and response to reperfusion. Clinically relevant conditions are employed that include exposure of the kidney to ischemia on the order of tens of minutes to hours. The temporal profile during the reperfusion phase of the autofluorescence intensity averaged over an area as large as possible was modeled as the product of two independent exponential functions. Time constants were extracted from fits to the experimental data and their average values were found to increase with injury time.


Assuntos
Diagnóstico por Computador/métodos , Rim/irrigação sanguínea , Rim/metabolismo , NAD/análise , Traumatismo por Reperfusão/diagnóstico , Traumatismo por Reperfusão/metabolismo , Espectrometria de Fluorescência/métodos , Animais , Biomarcadores/análise , Modelos Animais de Doenças , Masculino , Ratos , Ratos Endogâmicos WF , Sensibilidade e Especificidade
18.
Shock ; 50(6): 696-705, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29394242

RESUMO

Pulmonary thromboembolic events cause significant morbidity and mortality after severe trauma. Clinically, these lesions are believed to be emboli arising secondary to deep venous thrombosis (DVT) in the lower extremities. Recently, this notion has been challenged by clinical studies, showing that pulmonary clots arise after trauma in the absence of DVT. This suggests that pulmonary blood clots arise in situ via de novo thrombosis. In the present study, we characterize a murine weight-drop model of lateral blunt thoracic trauma. Our model demonstrates severe unilateral lung contusion injury with low (10%) mortality in the absence of extrapulmonary injury, after impact with a 50-g weight dropped from 45 cm height (657 J/m). At 24 h after injury, immunofluorescence and histological evidence revealed early pulmonary arterial thrombosis in the form of eccentric accumulation of fibrin and CD41 positive eosinophilic proteinaceous material, on both coup and contrecoup lung lobes of injured mice, indicating early thrombotic events both within and outside of the area of primary lung injury. Our model is ideal in that lateral impact enables greater impact energy to be applied to achieve significant lung contusion without significant mortality or extrapulmonary injury, and the model has additional translational value in creating thrombosis analogous to pulmonary embolism observed clinically after blunt thoracic trauma. To our knowledge, this is the first demonstration of de novo pulmonary thrombosis in a clinically translational model of blunt thoracic trauma, and supports challenges to current assumptions about the origin of pulmonary blood clots in the wake of severe traumatic injury.


Assuntos
Traumatismos Torácicos/metabolismo , Trombose Venosa/metabolismo , Animais , Lavagem Broncoalveolar , Modelos Animais de Doenças , Fibrina/metabolismo , Imunofluorescência , Marcação In Situ das Extremidades Cortadas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Glicoproteína IIb da Membrana de Plaquetas/metabolismo , Embolia Pulmonar/metabolismo
19.
J Biomed Opt ; 22(5): 56001, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28467536

RESUMO

Functional changes in rat kidneys during the induced ischemic injury and recovery phases were explored using multimodal autofluorescence and light scattering imaging. The aim is to evaluate the use of noncontact optical signatures for rapid assessment of tissue function and viability. Specifically, autofluorescence images were acquired in vivo under 355, 325, and 266 nm illumination while light scattering images were collected at the excitation wavelengths as well as using relatively narrowband light centered at 500 nm. The images were simultaneously recorded using a multimodal optical imaging system. The signals were analyzed to obtain time constants, which were correlated to kidney dysfunction as determined by a subsequent survival study and histopathological analysis. Analysis of both the light scattering and autofluorescence images suggests that changes in tissue microstructure, fluorophore emission, and blood absorption spectral characteristics, coupled with vascular response, contribute to the behavior of the observed signal, which may be used to obtain tissue functional information and offer the ability to predict posttransplant kidney function.


Assuntos
Isquemia/diagnóstico por imagem , Rim/lesões , Recuperação de Função Fisiológica , Análise Espectral , Animais , Corantes Fluorescentes , Iluminação
20.
Nat Commun ; 7: 12823, 2016 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-27653213

RESUMO

Endothelial dysfunction is a hallmark of systemic inflammatory response underlying multiple organ failure. Here we report a novel function of DHHC-containing palmitoyl acyltransferases (PATs) in mediating endothelial inflammation. Pharmacological inhibition of PATs attenuates barrier leakage and leucocyte adhesion induced by endothelial junction hyperpermeability and ICAM-1 expression during inflammation. Among 11 DHHCs detected in vascular endothelium, DHHC21 is required for barrier response. Mice with DHHC21 function deficiency (Zdhhc21dep/dep) exhibit marked resistance to injury, characterized by reduced plasma leakage, decreased leucocyte adhesion and ameliorated lung pathology, culminating in improved survival. Endothelial cells from Zdhhc21dep/dep display blunted barrier dysfunction and leucocyte adhesion, whereas leucocytes from these mice did not show altered adhesiveness. Furthermore, inflammation enhances PLCß1 palmitoylation and signalling activity, effects significantly reduced in Zdhhc21dep/dep and rescued by DHHC21 overexpression. Likewise, overexpression of wild-type, not mutant, PLCß1 augments barrier dysfunction. Altogether, these data suggest the involvement of DHHC21-mediated PLCß1 palmitoylation in endothelial inflammation.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa