Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Inorg Chem ; 62(51): 20940-20947, 2023 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-38078891

RESUMO

Controlling the orientation of complex molecules in molecular junctions is crucial to their development into functional devices. To date, this has been achieved through the use of multipodal compounds (i.e., containing more than two anchoring groups), resulting in the formation of tri/tetrapodal compounds. While such compounds have greatly improved orientation control, this comes at the cost of lower surface coverage. In this study, we examine an alternative approach for generating multimodal compounds by binding multiple independent molecular wires together through metal coordination to form a molecular bundle. This was achieved by coordinating iron(II) and cobalt(II) to 5,5'-bis(methylthio)-2,2'-bipyridine (L1) and (methylenebis(4,1-phenylene))bis(1-(5-(methylthio)pyridin-2-yl)methanimine) (L2) to give two monometallic complexes, Fe-1 and Co-1, and two bimetallic helicates, Fe-2 and Co-2. Using XPS, all of the complexes were shown to bind to a gold surface in a fac fashion through three thiomethyl groups. Using single-molecule conductance and DFT calculations, each of the ligands was shown to conduct as an independent wire with no impact from the rest of the complex. These results suggest that this is a useful approach for controlling the geometry of junction formation without altering the conductance behavior of the individual molecular wires.

2.
J Am Chem Soc ; 143(10): 3817-3829, 2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33606524

RESUMO

The most probable single-molecule conductance of each member of a series of 12 conjugated molecular wires, 6 of which contain either a ruthenium or platinum center centrally placed within the backbone, has been determined. The measurement of a small, positive Seebeck coefficient has established that transmission through these molecules takes place by tunneling through the tail of the HOMO resonance near the middle of the HOMO-LUMO gap in each case. Despite the general similarities in the molecular lengths and frontier-orbital compositions, experimental and computationally determined trends in molecular conductance values across this series cannot be satisfactorily explained in terms of commonly discussed "single-parameter" models of junction conductance. Rather, the trends in molecular conductance are better rationalized from consideration of the complete molecular junction, with conductance values well described by transport calculations carried out at the DFT level of theory, on the basis of the Landauer-Büttiker model.

3.
ACS Sens ; 6(2): 530-537, 2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33471521

RESUMO

Indium tin oxide (ITO) is an attractive substrate for single-molecule electronics since it is transparent while maintaining electrical conductivity. Although it has been used before as a contacting electrode in single-molecule electrical studies, these studies have been limited to the use of carboxylic acid terminal groups for binding molecular wires to the ITO substrates. There is thus the need to investigate other anchoring groups with potential for binding effectively to ITO. With this aim, we have investigated the single-molecule conductance of a series of eight tolane or "tolane-like" molecular wires with a variety of surface binding groups. We first used gold-molecule-gold junctions to identify promising targets for ITO selectivity. We then assessed the propensity and selectivity of carboxylic acid, cyanoacrylic acid, and pyridinium-squarate to bind to ITO and promote the formation of molecular heterojunctions. We found that pyridinium squarate zwitterions display excellent selectivity for binding to ITO over gold surfaces, with contact resistivity comparable to that of carboxylic acids. These single-molecule experiments are complemented by surface chemical characterization with X-ray photoelectron spectroscopy, quartz crystal microbalance, contact angle determination, and nanolithography using an atomic force miscroscope. Finally, we report the first density-functional theory calculations involving ITO electrodes to model charge transport through ITO-molecule-gold heterojunctions.


Assuntos
Eletrônica , Compostos de Estanho , Condutividade Elétrica , Eletrodos
4.
Dalton Trans ; 47(40): 14125-14138, 2018 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-29951669

RESUMO

The past decade has seen a remarkable surge in studies of thin-film and single-molecule electronics, due in no small part to the development and advancement of experimental methods for the construction and measurement of metal|molecule|metal junctions. Within the plethora of molecular structures that have been investigated, metal complexes of general form trans-M(C[triple bond, length as m-dash]CR)2(Ln) have attracted attention from the inorganic and organometallic chemistry community in the search for efficient molecular wires due to the potential π-d-π orbital mixing along the molecular backbone. In this article progress towards this goal will be summarised, and design strategies for future molecular components discussed.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa