Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(50): e2314192120, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38048465

RESUMO

The field of one-dimensional semiconducting materials holds a wide variety of captivating applications, such as photovoltaic cells, electronic devices, catalysis cells, lasers, and more. The tunability of electrical, mechanical, or optical attributes of a semiconductor crystal relies on the ability to control and pattern the crystal's growth direction, orientation, and dimensions. In this study, we harvest the unique properties of crystallographic defects in Au substrates, specifically twin boundaries, to fabricate selective epitaxial growth of semiconducting nanocrystals. Different crystallographic defects were previously shown to enhance materials properties, such as, screw dislocations providing spiral crystal growth, dislocation outcrops, and vacancies increasing their catalytic activity, dislocation strengthening, and atomic doping changing the crystal's electrical properties. Here, we present a unique phenomenon of directed growth of semiconductor crystals of gold(I)-cyanide (AuCN) on the surface of thin Au layers, using traces of deformation twins on the surface. We show that emergence of deformation twins to the {111} Au surface leads to the formation of ledges, exposing new {001} and {111} facets on the surface. We propose that this phenomenon leads to epitaxial growth of AuCN on the freshly exposed {111} facets of the twin boundary trace ledges. Specific orientations of the twin boundaries with respect to the Au surface allow for patterned growth of AuCN in the <110> orientations. Nano-scale patterning of AuCN semiconductors may provide an avenue for property tuning, particularly the band gap acquired.

2.
Proc Natl Acad Sci U S A ; 119(16): e2120177119, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35412906

RESUMO

During the process of biomineralization, organisms utilize various biostrategies to enhance the mechanical durability of their skeletons. In this work, we establish that the presence of high-Mg nanoparticles embedded within lower-Mg calcite matrices is a widespread strategy utilized by various organisms from different kingdoms and phyla to improve the mechanical properties of their high-Mg calcite skeletons. We show that such phase separation and the formation of high-Mg nanoparticles are most probably achieved through spinodal decomposition of an amorphous Mg-calcite precursor. Such decomposition is independent of the biological characteristics of the studied organisms belonging to different phyla and even kingdoms but rather, originates from their similar chemical composition and a specific Mg content within their skeletons, which generally ranges from 14 to 48 mol % of Mg. We show evidence of high-Mg calcite nanoparticles in the cases of six biologically different organisms all demonstrating more than 14 mol % Mg-calcite and consider it likely that this phenomenon is immeasurably more prevalent in nature. We also establish the absence of these high-Mg nanoparticles in organisms whose Mg content is lower than 14 mol %, providing further evidence that whether or not spinodal decomposition of an amorphous Mg-calcite precursor takes place is determined by the amount of Mg it contains. The valuable knowledge gained from this biostrategy significantly impacts the understanding of how biominerals, although composed of intrinsically brittle materials, can effectively resist fracture. Moreover, our theoretical calculations clearly suggest that formation of Mg-rich nanoprecipitates greatly enhances the hardness of the biomineralized tissue as well.


Assuntos
Biomineralização , Carbonato de Cálcio , Magnésio , Nanopartículas , Esqueleto , Animais , Carbonato de Cálcio/química , Cristalização , Magnésio/química , Nanopartículas/química , Esqueleto/química
3.
Proc Natl Acad Sci U S A ; 118(39)2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34556576

RESUMO

Dislocations in metals affect their properties on the macro- and the microscales. For example, they increase a metal's hardness and strength. Dislocation outcrops exist on the surfaces of such metals, and atoms in the proximity of these outcrops are more loosely bonded, facilitating local chemical corrosion and reactivity. In this study, we present a unique autocatalytic mechanism by which a system of inorganic semiconducting gold(I) cyanide nanowires forms within preexisting dislocation lines in a plastically deformed Au-Ag alloy. The formation occurs during the classical selective dealloying process that forms nanoporous Au. Nucleation of the nanowire originates at the surfaces of the catalytic dislocation outcrops. The nanowires are single crystals that spontaneously undergo layer-by-layer one-dimensional growth. The continuous growth of nanowires is achieved when the dislocation density exceeds a critical value evaluated on the basis of a kinetic model that we developed.

4.
Faraday Discuss ; 235(0): 433-445, 2022 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-35420080

RESUMO

Organisms deposit various biominerals in the course of their biomineralisation. The most abundant of these is calcium carbonate, which manifests itself in several polymorphs. While organisms possess the ability to control the specific polymorph deposited, the exact mechanism by which polymorph selection takes place is not yet fully understood. Because biominerals often grow within confined spaces, one of the suggested possibilities was that polymorph selection might be an outcome of confinement. Confining conditions have indeed been extensively shown to have a strong impact on the nucleation and crystal growth of calcium carbonate and, in particular, on its polymorph selection. However, despite numerous studies on the crystal growth of calcium carbonate in confined spaces, the mechanism of polymorph selection under confinement has not been elucidated. Herein, we discuss previously reported results and suggest a mechanistic explanation of the observed selective formation of calcite or aragonite or vaterite. We consider the possible effects of charged confining inner surfaces and of the sizes of the confining pores, and discuss whether the predominantly precipitating phase is amorphous calcium carbonate. We also discuss two possible scenarios of crystallization from amorphous calcium carbonate under conditions of confinement: via solid-state transformation or via a mechanism of dissolution-reprecipitation.


Assuntos
Carbonato de Cálcio , Carbonato de Cálcio/química , Cristalização
5.
Phys Chem Chem Phys ; 23(11): 6600-6612, 2021 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-33704311

RESUMO

Size effects and structural modifications in amorphous TiO2 films deposited by atomic layer deposition (ALD) were investigated. As with the previously investigated ALD-deposited Al2O3 system we found that the film's structure and properties are strongly dependent on its thickness, but here, besides the significant change in the density of the films there is also a change in their chemical state. The thin near-surface layer contained a significantly larger amount of Ti+3 species and oxygen vacancies relative to the sample's bulk. We attribute this change in chemistry to the ALD specific deposition process wherein each different atomic species is deposited in turn, thereby forming a "corundum-like" structure of the near-surface layer resembling that found in the Al2O3 system. This, combined with the fact that each deposited layer starts out as a surface layer and maintains the surface structure over the next several following deposition cycles, is responsible for the overall decrease in the film density. This is the first time this effect has been shown in detail for TiO2, expending the previously discovered phenomenon to a new system and demonstrating that while similar effects occur, they can present in different ways for oxide systems with different structures and symmetries.

6.
Chemistry ; 26(70): 16860-16868, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33405235

RESUMO

Carbohydrates, along with proteins and peptides, are known to represent a major class of biomacromolecules involved in calcium carbonate biomineralization. However, in spite of multiple physical and biochemical characterizations, the explicit role of saccharide macromolecules (long chains of carbohydrate molecules) in mineral deposition is not yet understood. In this study, we investigated the influence of two common acidic monosaccharides (MSs), the two simplest forms of acidic carbohydrates, namely glucuronic and galacturonic acids, on the formation of calcite crystals in vitro. We show here that the size, morphology, and microstructure of calcite crystals are altered when they are grown in the presence of these MSs. More importantly, these MSs were found to become incorporated into the calcite crystalline lattice and induce anisotropic lattice distortions, a phenomenon widely studied for other biomolecules related to CaCO3 biomineralization, but never before reported in the case of single MSs. Changes in the calcite lattice induced by MSs incorporation were precisely determined by high-resolution synchrotron powder X-ray diffraction. We believe that the results of this research may deepen our understanding of the interaction of saccharide polymers with an inorganic host and shed light on the implications of carbohydrates for biomineralization processes.


Assuntos
Carbonato de Cálcio , Monossacarídeos , Ácidos/química , Carbonato de Cálcio/química , Cristalização , Minerais/química , Monossacarídeos/química
7.
Chemistry ; 25(55): 12740-12750, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31241793

RESUMO

The biological mediation of mineral formation (biomineralization) is realized through diverse organic macromolecules that guide this process in a spatial and temporal manner. Although the role of these molecules in biomineralization is being gradually revealed, the molecular basis of their regulatory function is still poorly understood. In this study, the incorporation and distribution of the model intrinsically disordered starmaker-like (Stm-l) protein, which is active in fish otoliths biomineralization, within calcium carbonate crystals, is revealed. Stm-l promotes crystal nucleation and anisotropic tailoring of crystal morphology. Intracrystalline incorporation of Stm-l protein unexpectedly results in shrinkage (and not expansion, as commonly described in biomineral and bioinspired crystals) of the crystal lattice volume, which is described herein, for the first time, for bioinspired mineralization. A ring pattern was observed in crystals grown for 48 h; this was composed of a protein-enriched region flanked by protein-depleted regions. It can be explained as a result of the Ostwald-like ripening process and intrinsic properties of Stm-l, and bears some analogy to the daily growth layers of the otolith.


Assuntos
Carbonato de Cálcio/química , Minerais/química , Membrana dos Otólitos/metabolismo , Proteínas Recombinantes/química , Animais , Peixes , Membrana dos Otólitos/química , Proteínas Recombinantes/metabolismo
8.
Phys Chem Chem Phys ; 21(27): 14887-14891, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31233047

RESUMO

The physical properties of nanocrystalline materials are known to be size dependent, owing to surface effects. Theoretically, a similar effect should also exist in amorphous materials. To examine this possibility, we carried out a study in which amorphous thin films of aluminum oxide were produced by atomic layer deposition (ALD) and studied by X-ray Absorption Near Edge Structure Spectroscopy (XANES) in grazing incidence geometry, as a function of the grazing angle. This allowed us to probe the Al local environment as a function of depth from the surface. The fraction of Al6 sites was found to be substantially lower at the surface than deeper in the film, meaning that the surface is relatively rich in Al4 sites. These results are in line with previous theoretical and experimental findings, shed further light on the structure and properties of amorphous nanometric materials and indeed indicate that size effects exist in amorphous nanometric materials.

9.
Soft Matter ; 14(38): 7782-7792, 2018 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-30079427

RESUMO

Plants are protected from the elements by a complex hierarchical epicuticular wax layer which has inspired the creation of super-hydrophobic and self-cleaning surfaces. Although many studies have been conducted on different plant wax systems to determine the mechanisms of water repulsion hardly any have studied the recovery of the epicuticular wax layer. In the current study the wetting properties and crystallographic nature of the wax surface of Brassica oleracea var. italica (broccoli) has been studied, as well as the time-dependent recovery of the surface after mechanical damage. It was found that the surface of the broccoli leaves is not only super-repulsive and self-cleaning in regards to water but also in regards to glycerol and formamide, both of which have considerably lower surface tension values. Furthermore, it was shown that the surface properties do indeed recover after damage and that this recovery is multi-stepped and strongly dependent on the recovery of the roughness of the surface.


Assuntos
Brassica/química , Fenômenos Mecânicos , Folhas de Planta/química , Molhabilidade , Fenômenos Biomecânicos , Brassica/fisiologia , Cinética , Folhas de Planta/fisiologia
10.
Nat Mater ; 15(8): 903-10, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27135858

RESUMO

Structural biominerals are inorganic/organic composites that exhibit remarkable mechanical properties. However, the structure-property relationships of even the simplest building unit-mineral single crystals containing embedded macromolecules-remain poorly understood. Here, by means of a model biomineral made from calcite single crystals containing glycine (0-7 mol%) or aspartic acid (0-4 mol%), we elucidate the origin of the superior hardness of biogenic calcite. We analysed lattice distortions in these model crystals by using X-ray diffraction and molecular dynamics simulations, and by means of solid-state nuclear magnetic resonance show that the amino acids are incorporated as individual molecules. We also demonstrate that nanoindentation hardness increased with amino acid content, reaching values equivalent to their biogenic counterparts. A dislocation pinning model reveals that the enhanced hardness is determined by the force required to cut covalent bonds in the molecules.

12.
J Am Chem Soc ; 138(8): 2585-91, 2016 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-26790500

RESUMO

Various molecules are known to form self-assembled monolayers (SAMs) on the surface of liquids. We present a simple method of investigating the kinetics of such SAM formation on sessile drops of various liquids such as mercury, water and fluorocarbon. To measure the surface tension of the drops we used an optical tensiometer that calculates the surface tension from the axisymmetric drop shape and the Young-Laplace relation. In addition, we estimated the SAM surface coverage fraction from the surface tension measured by other techniques. With this methodology we were able to optically detect concentrations as low as tenths of ppb increments of SAM molecules in solution and to compare the kinetics of SAM formation measured as a function of molecule concentration or chain length. The analysis is performed in detail for the case of alkanethiols on mercury and then shown to be more general by investigating the case of SAM formation of stearic acid on a water droplet in hexadecane and of perfluorooctanol on a Fluorinert FC-40 droplet in ethanol.

13.
J Am Chem Soc ; 138(14): 4881-9, 2016 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-26986837

RESUMO

Structures of the α and ß phases of resorcinol, a major commodity chemical in the pharmaceutical, agrichemical, and polymer industries, were the first polymorphic pair of molecular crystals solved by X-ray analysis. It was recently stated that "no additional phases can be found under atmospheric conditions" (Druzbicki, K. et al. J. Phys. Chem. B 2015, 119, 1681). Herein is described the growth and structure of a new ambient pressure phase, ε, through a combination of optical and X-ray crystallography and by computational crystal structure prediction algorithms. α-Resorcinol has long been a model for mechanistic crystal growth studies from both solution and vapor because prisms extended along the polar axis grow much faster in one direction than in the opposite direction. Research has focused on identifying the absolute sense of the fast direction-the so-called "resorcinol riddle"-with the aim of identifying how solvent controls crystal growth. Here, the growth velocity dissymmetry in the melt is analyzed for the ß phase. The ε phase only grows from the melt, concomitant with the ß phase, as polycrystalline, radially growing spherulites. If the radii are polar, then the sense of the polar axis is an essential feature of the form. Here, this determination is made for spherulites of ß resorcinol (ε, point symmetry 222, does not have a polar axis) with additives that stereoselectively modify growth velocities. Both ß and ε have the additional feature that individual radial lamellae may adopt helicoidal morphologies. We correlate the appearance of twisting in ß and ε with the symmetry of twist-inducing additives.

14.
Proc Natl Acad Sci U S A ; 108(3): 995-1000, 2011 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-21191101

RESUMO

Most of the world's bacteria exist in robust, sessile communities known as biofilms, ubiquitously adherent to environmental surfaces from ocean floors to human teeth and notoriously resistant to antimicrobial agents. We report the surprising observation that Bacillus subtilis biofilm colonies and pellicles are extremely nonwetting, greatly surpassing the repellency of Teflon toward water and lower surface tension liquids. The biofilm surface remains nonwetting against up to 80% ethanol as well as other organic solvents and commercial biocides across a large and clinically important concentration range. We show that this property limits the penetration of antimicrobial liquids into the biofilm, severely compromising their efficacy. To highlight the mechanisms of this phenomenon, we performed experiments with mutant biofilms lacking ECM components and with functionalized polymeric replicas of biofilm microstructure. We show that the nonwetting properties are a synergistic result of ECM composition, multiscale roughness, reentrant topography, and possibly yet other factors related to the dynamic nature of the biofilm surface. Finally, we report the impenetrability of the biofilm surface by gases, implying defense capability against vapor-phase antimicrobials as well. These remarkable properties of B. subtilis biofilm, which may have evolved as a protection mechanism against native environmental threats, provide a new direction in both antimicrobial research and bioinspired liquid-repellent surface paradigms.


Assuntos
Bacillus subtilis/fisiologia , Biofilmes , Matriz Extracelular/química , Molhabilidade , Físico-Química/métodos , Desinfetantes , Etanol , Microscopia Confocal , Solventes , Propriedades de Superfície , Microtomografia por Raio-X
15.
Sci Adv ; 10(29): eadn3923, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39018411

RESUMO

Molybdenum is an essential micronutrient, but because of its toxicity at high concentrations, its accumulation in living organisms has not been widely demonstrated. In this study, we report that the marine sponge Theonella conica accumulates exceptionally high levels of molybdenum (46,793 micrograms per gram of dry weight) in a wide geographic distribution from the northern Red Sea to the reefs of Zanzibar, Indian Ocean. The element is found in various sponge body fractions and correlates to selenium. We further investigated the microbial composition of the sponge and compared it to its more studied congener, Theonella swinhoei. Our analysis illuminates the symbiotic bacterium Entotheonella sp. and its role in molybdenum accumulation. Through microscopic and analytical methods, we provide evidence of intracellular spheres within Entotheonella sp. that exhibit high molybdenum content, further unraveling the intricate mechanisms behind molybdenum accumulation in this sponge species and its significance in the broader context of molybdenum biogeochemical cycling.


Assuntos
Molibdênio , Poríferos , Molibdênio/metabolismo , Animais , Poríferos/metabolismo , Oceano Índico , Oceano Pacífico
16.
Sci Adv ; 10(28): eado2483, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38996017

RESUMO

Noninvasive tracking of biochemical processes in the body is paramount in diagnostic medicine. Among the leading techniques is spectroscopic magnetic resonance imaging (MRI), which tracks metabolites with an amplified (hyperpolarized) magnetization signal injected into the subject just before scanning. Traditionally, the brief enhanced magnetization period of these agents limited clinical imaging. We propose a solution based on amalgamating two materials-one having diagnostic-metabolic activity and the other characterized by robust magnetization retention. This combination slows the magnetization decay in the diagnostic metabolic probe, which receives continuously replenished magnetization from the companion material. Thus, it extends the magnetization lifetime in some of our measurements to beyond 4 min, with net magnetization enhanced by more than four orders of magnitude. This could allow the metabolic probes to remain magnetized from injection until they reach the targeted organ, improving tissue signatures in clinical imaging. Upon validation, this metabolic MRI technique promises wide-ranging clinical applications, including diagnostic imaging, therapeutic monitoring, and posttreatment surveillance.


Assuntos
Meios de Contraste , Imageamento por Ressonância Magnética , Imageamento por Ressonância Magnética/métodos , Meios de Contraste/química , Humanos , Animais , Magnetismo
17.
Cryst Growth Des ; 24(8): 3237-3245, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38659663

RESUMO

Heterostructures in nanoparticles challenge our common understanding of interfaces due to quantum confinement and size effects, giving rise to synergistic properties. An alternating heterostructure in which multiple and reoccurring interfaces appear in a single nanocrystal is hypothesized to accentuate such properties. We present a colloidal synthesis for perovskite layered heterostructure nanoparticles with a (PbBr2)2(AMTP)2PbBr4 composition. By varying the synthetic parameters, such as synthesis temperature, solvent, and selection of precursors, we control particle size, shape, and product priority. The structures are validated by X-ray and electron diffraction techniques. The heterostructure nanoparticles' main optical feature is a broad emission peak, showing the same range of wavelengths compared to the bulk sample.

18.
J Struct Biol ; 183(2): 191-8, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23669626

RESUMO

Biogenic vaterite is extremely rare. The only known example of a completely vateritic mineralized structure is the spicule of the solitary ascidian, Herdmania momus. In characterizing the structure of these spicules, using state-of-the-art techniques such as synchrotron X-ray diffraction and synchrotron micro- and nanotomography, we observed a continuous structural pattern from the macro down to the micro, nano, and atomic scales. We show that the spicules demonstrate a unique architecture composed of micron-sized, hexagonally faceted thorns organized in partial spirals along the cylinder-like polycrystalline body of the spicule, and tilted from it at an angle of about 26°. This morphological orientation coincides with the crystallographic orientation relationship between each thorn and the polycrystals within the spicule. Hence the entire spicule grows along the [011] direction of vaterite while the individual thorns grow along the [001] direction. This, together with the presence of both inter- and intra-crystalline organic phases, beautifully displays the organism's ability to achieve perfect control of mineralization biologically while employing an unstable polymorph of calcium carbonate: vaterite.


Assuntos
Exoesqueleto/crescimento & desenvolvimento , Urocordados/anatomia & histologia , Exoesqueleto/anatomia & histologia , Exoesqueleto/metabolismo , Animais , Carbonato de Cálcio/química , Cristalografia , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Urocordados/química , Difração de Raios X
19.
J Struct Biol ; 184(3): 454-63, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24121160

RESUMO

Nacre is the iridescent inner lining of many mollusk shells, with a unique lamellar structure at the sub-micron scale, and remarkable resistance to fracture. Despite extensive studies, nacre formation mechanisms remain incompletely understood. Here we present 20-nm, 2°-resolution polarization-dependent imaging contrast (PIC) images of shells from 15 mollusk species, mapping nacre tablets and their orientation patterns. These data show where new crystal orientations appear and how similar orientations propagate as nacre grows. In all shells we found stacks of co-oriented aragonite (CaCO3) tablets arranged into vertical columns or staggered diagonally. Near the nacre-prismatic (NP) boundary highly disordered spherulitic aragonite is nucleated. Overgrowing nacre tablet crystals are most frequently co-oriented with the underlying aragonite spherulites, or with another tablet. Away from the NP-boundary all tablets are nearly co-oriented in all species, with crystal lattice tilting, abrupt or gradual, always observed and always small (plus or minus 10°). Therefore aragonite crystal growth in nacre is near-epitaxial. Based on these data, we propose that there is one mineral bridge per tablet, and that "bridge tilting" may occur without fracturing the bridge, hence providing the seed from which the next tablet grows near-epitaxially.


Assuntos
Exoesqueleto/ultraestrutura , Moluscos , Nácar/análise , Exoesqueleto/química , Animais , Análise de Elementos Finitos , Processamento de Imagem Assistida por Computador , Nácar/química , Espectroscopia Fotoeletrônica/métodos
20.
Mater Today Bio ; 18: 100516, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36569590

RESUMO

Superhydrophobicity is a well-known wetting phenomenon found in numerous plants and insects. It is achieved by the combination of the surface's chemical properties and its surface roughness. Inspired by nature, numerous synthetic superhydrophobic surfaces have been developed for various applications. Designated surface coating is one of the fabrication routes to achieve the superhydrophobicity. Yet, many of these coatings, such as fluorine-based formulations, may pose severe health and environmental risks, limiting their applicability. Herein, we present a new family of superhydrophobic coatings comprised of natural saturated fatty acids, which are not only a part of our daily diet, but can be produced from renewable feedstock, providing a safe and sustainable alternative to the existing state-of-the-art. These crystalline coatings are readily fabricated via single-step deposition routes, namely thermal deposition or spray-coating. The fatty acids self-assemble into highly hierarchical crystalline structures exhibiting a water contact angle of ∼165° and contact angle hysteresis lower than 6°, while their properties and morphology depend on the specific fatty acid used as well as on the deposition technique. Moreover, the fatty acid coatings demonstrate excellent thermal stability. Importantly, this new family of coatings displays excellent anti-biofouling and antimicrobial properties against Escherichia coli and Listeria innocua, used as relevant model Gram-negative and Gram-positive bacteria, respectively. These multifunctional coatings hold immense potential for application in numerous fields, ranging from food safety to biomedicine, offering sustainable and safe solutions.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa