Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 828, 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38280853

RESUMO

Caloric Restriction (CR) has established anti-cancer effects, but its clinical relevance and molecular mechanism remain largely undefined. Here, we investigate CR's impact on several mouse models of Acute Myeloid Leukemias, including Acute Promyelocytic Leukemia, a subtype strongly affected by obesity. After an initial marked anti-tumor effect, lethal disease invariably re-emerges. Initially, CR leads to cell-cycle restriction, apoptosis, and inhibition of TOR and insulin/IGF1 signaling. The relapse, instead, is associated with the non-genetic selection of Leukemia Initiating Cells and the downregulation of double-stranded RNA (dsRNA) sensing and Interferon (IFN) signaling genes. The CR-induced adaptive phenotype is highly sensitive to pharmacological or genetic ablation of LSD1, a lysine demethylase regulating both stem cells and dsRNA/ IFN signaling. CR + LSD1 inhibition leads to the re-activation of dsRNA/IFN signaling, massive RNASEL-dependent apoptosis, and complete leukemia eradication in ~90% of mice. Importantly, CR-LSD1 interaction can be modeled in vivo and in vitro by combining LSD1 ablation with pharmacological inhibitors of insulin/IGF1 or dual PI3K/MEK blockade. Mechanistically, insulin/IGF1 inhibition sensitizes blasts to LSD1-induced death by inhibiting the anti-apoptotic factor CFLAR. CR and LSD1 inhibition also synergize in patient-derived AML and triple-negative breast cancer xenografts. Our data provide a rationale for epi-metabolic pharmacologic combinations across multiple tumors.


Assuntos
Insulinas , Leucemia Mieloide Aguda , Humanos , Animais , Camundongos , Restrição Calórica , Leucemia Mieloide Aguda/patologia , Histona Desmetilases/genética , Células-Tronco Neoplásicas/patologia , Linhagem Celular Tumoral
2.
Cancer Res ; 83(13): 2155-2170, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37133448

RESUMO

Metastatic breast cancer has a poor prognosis and is largely considered incurable. A better understanding of the molecular determinants of breast cancer metastasis could facilitate development of improved prevention and treatment strategies. We used lentiviral barcoding coupled to single-cell RNA sequencing to trace clonal and transcriptional evolution during breast cancer metastasis and showed that metastases derive from rare prometastatic clones that are underrepresented in primary tumors. Both low clonal fitness and high metastatic potential were independent of clonal origin. Differential expression and classification analyses revealed that the prometastatic phenotype was acquired by rare cells characterized by the concomitant hyperactivation of extracellular matrix remodeling and dsRNA-IFN signaling pathways. Notably, genetic silencing of key genes in these pathways (KCNQ1OT1 or IFI6, respectively) significantly impaired migration in vitro and metastasis in vivo, with marginal effects on cell proliferation and tumor growth. Gene expression signatures derived from the identified prometastatic genes predict metastatic progression in patients with breast cancer, independently of known prognostic factors. This study elucidates previously unknown mechanisms of breast cancer metastasis and provides prognostic predictors and therapeutic targets for metastasis prevention. SIGNIFICANCE: Transcriptional lineage tracing coupled with single-cell transcriptomics defined the transcriptional programs underlying metastatic progression in breast cancer, identifying prognostic signatures and prevention strategies.


Assuntos
Perfilação da Expressão Gênica , Transdução de Sinais , Humanos , Linhagem Celular Tumoral , Transdução de Sinais/genética , Prognóstico , Matriz Extracelular/genética , Metástase Neoplásica , Regulação Neoplásica da Expressão Gênica
3.
Cell Death Differ ; 29(12): 2429-2444, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35739253

RESUMO

Aging is accompanied by the progressive decline in tissue regenerative capacity and functions of resident stem cells (SCs). Underlying mechanisms, however, remain unclear. Here we show that, during chronological aging, self-renewing mitoses of mammary SCs (MaSCs) are preferentially asymmetric and that their progeny divides less frequently, leading to decreased number of MaSCs and reduced regenerative potential. Underlying mechanisms are investigated in the p66Shc-/- mouse, which exhibits several features of delayed aging, including reduced involution of the mammary gland (MG). p66Shc is a mitochondrial redox sensor that activates a specific p53 transcriptional program, in which the aging-associated p44 isoform of p53 plays a pivotal role. We report here that aged p66Shc-/- MaSCs show increased symmetric divisions, increased proliferation and increased regenerative potential, to an extent reminiscent of young wild-type (WT) MaSCs. Mechanistically, we demonstrate that p66Shc, together with p53: (i) accumulates in the aged MG, (ii) sustains expression of the cell polarity determinant mInscuteable and, concomitantly, (iii) down-regulates critical cell cycle genes (e.g.,: Cdk1 and Cyclin A). Accordingly, overexpression of p53/p44 increases asymmetric divisions and decreases proliferation of young WT MaSCs in a p66Shc-dependent manner and overexpression of mInsc restores WT-like levels of asymmetric divisions in aged p66Shc-/- MaSCs. Notably, deletion of p66Shc has negligible effects in young MaSCs and MG development. These results demonstrate that MG aging is due to aberrant activation of p66Shc, which induces p53/p44 signaling, leading to failure of symmetric divisions, decreased proliferation and reduced regenerative potential of MaSCs.


Assuntos
Glândulas Mamárias Animais , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src , Células-Tronco , Proteína Supressora de Tumor p53 , Animais , Camundongos , Proliferação de Células , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/genética , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/metabolismo , Células-Tronco/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Glândulas Mamárias Animais/citologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa