Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nat Chem Biol ; 20(6): 732-741, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38321209

RESUMO

Glycosylation is a critical post-translational protein modification that affects folding, half-life and functionality. Glycosylation is a non-templated and heterogeneous process because of the promiscuity of the enzymes involved. We describe a platform for sequential glycosylation reactions for tailored sugar structures (SUGAR-TARGET) that allows bespoke, controlled N-linked glycosylation in vitro enabled by immobilized enzymes produced with a one-step immobilization/purification method. We reconstruct a reaction cascade mimicking a glycosylation pathway where promiscuity naturally exists to humanize a range of proteins derived from different cellular systems, yielding near-homogeneous glycoforms. Immobilized ß-1,4-galactosyltransferase is used to enhance the galactosylation profile of three IgGs, yielding 80.2-96.3% terminal galactosylation. Enzyme recycling is demonstrated for a reaction time greater than 80 h. The platform is easy to implement, modular and reusable and can therefore produce homogeneous glycan structures derived from various hosts for functional and clinical evaluation.


Assuntos
Enzimas Imobilizadas , Galactosiltransferases , Glicosilação , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Humanos , Galactosiltransferases/metabolismo , Galactosiltransferases/química , Polissacarídeos/metabolismo , Polissacarídeos/química , Processamento de Proteína Pós-Traducional
2.
Traffic ; 22(3): 48-63, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33263222

RESUMO

The structural organization of the Golgi stacks in mammalian cells is intrinsically linked to function, including glycosylation, but the role of morphology is less clear in lower eukaryotes. Here we investigated the link between the structural organization of the Golgi and secretory pathway function using Pichia pastoris as a model system. To unstack the Golgi cisternae, we disrupted 18 genes encoding proteins in the secretory pathway without loss of viability. Using biosensors, confocal microscopy and transmission electron microscopy we identified three strains with irreversible perturbations in the stacking of the Golgi cisternae, all of which had disruption in genes that encode proteins with annotated function as or homology to calcium/calcium permeable ion channels. Despite this, no variation in the secretory pathway for ER size, whole cell glycomics or recombinant protein glycans was observed. Our investigations showed the robust nature of the secretory pathway in P. pastoris and suggest that Ca2+ concentration, homeostasis or signalling may play a significant role for Golgi stacking in this organism and should be investigated in other organisms.


Assuntos
Complexo de Golgi , Saccharomyces cerevisiae , Animais , Complexo de Golgi/metabolismo , Proteínas/metabolismo , Saccharomycetales , Via Secretória
3.
Biotechnol Bioeng ; 120(9): 2479-2493, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37272445

RESUMO

Metabolic modeling has emerged as a key tool for the characterization of biopharmaceutical cell culture processes. Metabolic models have also been instrumental in identifying genetic engineering targets and developing feeding strategies that optimize the growth and productivity of Chinese hamster ovary (CHO) cells. Despite their success, metabolic models of CHO cells still present considerable challenges. Genome-scale metabolic models (GeMs) of CHO cells are very large (>6000 reactions) and are difficult to constrain to yield physiologically consistent flux distributions. The large scale of GeMs also makes the interpretation of their outputs difficult. To address these challenges, we have developed CHOmpact, a reduced metabolic network that encompasses 101 metabolites linked through 144 reactions. Our compact reaction network allows us to deploy robust, nonlinear optimization and ensure that the computed flux distributions are physiologically consistent. Furthermore, our CHOmpact model delivers enhanced interpretability of simulation results and has allowed us to identify the mechanisms governing shifts in the anaplerotic consumption of asparagine and glutamate as well as an important mechanism of ammonia detoxification within mitochondria. CHOmpact, thus, addresses key challenges of large-scale metabolic models and will serve as a platform to develop dynamic metabolic models for the control and optimization of biopharmaceutical cell culture processes.


Assuntos
Genoma , Redes e Vias Metabólicas , Cricetinae , Animais , Cricetulus , Células CHO , Simulação por Computador
4.
Microb Cell Fact ; 20(1): 116, 2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-34112158

RESUMO

BACKGROUND:  A key focus of synthetic biology is to develop microbial or cell-free based biobased routes to value-added chemicals such as fragrances. Originally, we developed the EcoFlex system, a Golden Gate toolkit, to study genes/pathways flexibly using Escherichia coli heterologous expression. In this current work, we sought to use EcoFlex to optimise a synthetic raspberry ketone biosynthetic pathway. Raspberry ketone is a high-value (~ £20,000 kg-1) fine chemical farmed from raspberry (Rubeus rubrum) fruit. RESULTS:  By applying a synthetic biology led design-build-test-learn cycle approach, we refactor the raspberry ketone pathway from a low level of productivity (0.2 mg/L), to achieve a 65-fold (12.9 mg/L) improvement in production. We perform this optimisation at the prototype level (using microtiter plate cultures) with E. coli DH10ß, as a routine cloning host. The use of E. coli DH10ß facilitates the Golden Gate cloning process for the screening of combinatorial libraries. In addition, we also newly establish a novel colour-based phenotypic screen to identify productive clones quickly from solid/liquid culture. CONCLUSIONS:  Our findings provide a stable raspberry ketone pathway that relies upon a natural feedstock (L-tyrosine) and uses only constitutive promoters to control gene expression. In conclusion we demonstrate the capability of EcoFlex for fine-tuning a model fine chemical pathway and provide a range of newly characterised promoter tools gene expression in E. coli.


Assuntos
Vias Biossintéticas , Butanonas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Poliésteres/metabolismo , Tirosina/metabolismo , Clonagem Molecular/métodos , Regulação Bacteriana da Expressão Gênica , Engenharia Genética , Microbiologia Industrial , Regiões Promotoras Genéticas , Biologia Sintética
5.
Proc Natl Acad Sci U S A ; 115(19): E4340-E4349, 2018 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-29666238

RESUMO

Native cell-free transcription-translation systems offer a rapid route to characterize the regulatory elements (promoters, transcription factors) for gene expression from nonmodel microbial hosts, which can be difficult to assess through traditional in vivo approaches. One such host, Bacillus megaterium, is a giant Gram-positive bacterium with potential biotechnology applications, although many of its regulatory elements remain uncharacterized. Here, we have developed a rapid automated platform for measuring and modeling in vitro cell-free reactions and have applied this to B. megaterium to quantify a range of ribosome binding site variants and previously uncharacterized endogenous constitutive and inducible promoters. To provide quantitative models for cell-free systems, we have also applied a Bayesian approach to infer ordinary differential equation model parameters by simultaneously using time-course data from multiple experimental conditions. Using this modeling framework, we were able to infer previously unknown transcription factor binding affinities and quantify the sharing of cell-free transcription-translation resources (energy, ribosomes, RNA polymerases, nucleotides, and amino acids) using a promoter competition experiment. This allows insights into resource limiting-factors in batch cell-free synthesis mode. Our combined automated and modeling platform allows for the rapid acquisition and model-based analysis of cell-free transcription-translation data from uncharacterized microbial cell hosts, as well as resource competition within cell-free systems, which potentially can be applied to a range of cell-free synthetic biology and biotechnology applications.


Assuntos
Bacillus megaterium , Modelos Biológicos , Biossíntese de Proteínas , Transcrição Gênica , Bacillus megaterium/química , Bacillus megaterium/genética , Bacillus megaterium/metabolismo , Sistema Livre de Células/química , Sistema Livre de Células/metabolismo
6.
Int J Mol Sci ; 22(21)2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34769426

RESUMO

Accumulation of unfolded/misfolded proteins in neuronal cells perturbs endoplasmic reticulum homeostasis, triggering a stress cascade called unfolded protein response (UPR), markers of which are upregulated in Alzheimer's disease (AD) brain specimens. We measured the UPR dynamic response in three human neuroblastoma cell lines overexpressing the wild-type and two familial AD (FAD)-associated mutant forms of amyloid precursor protein (APP), the Swedish and Swedish-Indiana mutations, using gene expression analysis. The results reveal a differential response to subsequent environmental stress depending on the genetic background, with cells overexpressing the Swedish variant of APP exhibiting the highest global response. We further developed a dynamic mathematical model of the UPR that describes the activation of the three branches of this stress response in response to unfolded protein accumulation. Model-based analysis of the experimental data suggests that the mutant cell lines experienced a higher protein load and subsequent magnitude of transcriptional activation compared to the cells overexpressing wild-type APP, pointing to higher susceptibility of mutation-carrying cells to stress. The model was then used to understand the effect of therapeutic agents salubrinal, lithium, and valproate on signalling through different UPR branches. This study proposes a novel integrated platform to support the development of therapeutics for AD.


Assuntos
Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/metabolismo , Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/genética , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Simulação por Computador , Estresse do Retículo Endoplasmático , Predisposição Genética para Doença , Humanos , Mutação , Resposta a Proteínas não Dobradas
7.
Biotechnol Bioeng ; 116(3): 656-666, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30552674

RESUMO

Cell-free protein synthesis (CFPS) has recently undergone a resurgence partly due to the proliferation of synthetic biology. The variety of hosts used for cell-free extract production has increased, which harnesses the diversity of cellular biosynthetic, protein folding, and posttranslational modification capabilities available. Here we describe a CFPS platform derived from Pichia pastoris, a popular recombinant protein expression host both in academia and the biopharmaceutical industry. A novel ribosome biosensor was developed to optimize the cell extract harvest time. Using this biosensor, we identified a potential bottleneck in ribosome content. Therefore, we undertook strain engineering to overexpress global regulators of ribosome biogenesis to increase in vitro protein production. CFPS extracts from the strain overexpressing FHL1 had a three-fold increase in recombinant protein yield compared with those from the wild-type X33 strain. Furthermore, our novel CFPS platform can produce complex therapeutic proteins, as exemplified by the production of human serum albumin to a final yield of 48.1 µg ml -1 . Therefore, this study not only adds to the growing number of CFPS systems from diverse organisms but also provides a blueprint for rapidly engineering new strains with increased productivity in vitro that could be applied to other organisms.


Assuntos
Técnicas Biossensoriais/métodos , Sistema Livre de Células/microbiologia , Engenharia Genética/métodos , Pichia/metabolismo , Proteínas Recombinantes/metabolismo , Pichia/genética , Biossíntese de Proteínas , Proteínas Recombinantes/genética , Biologia Sintética/métodos
8.
Biotechnol Bioeng ; 115(2): 512-518, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28921534

RESUMO

Transient gene expression (TGE) is a methodology employed in bioprocessing for the fast provision of recombinant protein material. Mild hypothermia is often introduced to overcome the low yield typically achieved with TGE and improve specific protein productivity. It is therefore of interest to examine the impact of mild hypothermic temperatures on both the yield and quality of transiently expressed proteins and the relationship to changes in cellular processes and metabolism. In this study, we focus on the ability of a Chinese hamster ovary cell line to galactosylate a recombinant monoclonal antibody (mAb) product. Through experimentation and flux balance analysis, our results show that TGE in mild hypothermic conditions led to a 76% increase in qP compared to TGE at 36.5°C in our system. This increase is accompanied by increased consumption of nutrients and amino acids, together with increased production of intracellular nucleotide sugar species, and higher rates of mAb galactosylation, despite a reduced rate of cell growth. The reduction in biomass accumulation allowed cells to redistribute their energy and resources toward mAb synthesis and Fc-glycosylation. Interestingly, the higher capacity of cells to galactosylate the recombinant product in TGE at 32°C appears not to have been assisted by the upregulation of galactosyltransferases (GalTs), but by the increased expression of N-acetylglucosaminyltransferase II (GnTII) in this cell line, which facilitated the production of bi-antennary glycan structures for further processing.


Assuntos
Anticorpos Monoclonais , Fragmentos Fc das Imunoglobulinas , Proteínas Recombinantes , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/metabolismo , Reatores Biológicos , Células CHO , Cricetinae , Cricetulus , Expressão Gênica/genética , Expressão Gênica/fisiologia , Glicosilação , Fragmentos Fc das Imunoglobulinas/química , Fragmentos Fc das Imunoglobulinas/genética , Fragmentos Fc das Imunoglobulinas/metabolismo , Análise do Fluxo Metabólico , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Temperatura
9.
Protein Expr Purif ; 149: 43-50, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29601964

RESUMO

Pichia pastoris (Komagataella phaffi) has been used for recombinant protein production for over 30 years with over 5000 proteins reported to date. However, yields of antibody are generally low. We have evaluated the effect of secretion signal peptides on the production of a broadly neutralizing antibody (VRC01) to increase yield. Eleven different signal peptides, including the murine IgG1 signal peptide, were combinatorially evaluated for their effect on antibody titer. Strains using different combinations of signal peptides were identified that secreted approximately 2-7 fold higher levels of VRC01 than the previous best secretor, with the highest yield of 6.50 mg L-1 in shake flask expression. Interestingly it was determined that the highest yields were achieved when the murine IgG1 signal peptide was fused to the light chain, with several different signal peptides leading to high yield when fused to the heavy chain. Finally, we have evaluated the effect of using a 2A signal peptide to create a bicistronic vector in the attempt to reduce burden and increase transformation efficiency, but found it to give reduced yields compared to using two independent vectors.


Assuntos
Anticorpos Anti-HIV/biossíntese , Pichia/metabolismo , Proteínas Recombinantes/biossíntese , Animais , Expressão Gênica , Vetores Genéticos/metabolismo , Imunoglobulina G/biossíntese , Camundongos , Conformação Proteica , Sinais Direcionadores de Proteínas
10.
Biotechnol Bioeng ; 114(6): 1290-1300, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28112405

RESUMO

Many high-value added recombinant proteins, such as therapeutic glycoproteins, are produced using mammalian cell cultures. In order to optimize the productivity of these cultures it is important to monitor cellular metabolism, for example the utilization of nutrients and the accumulation of metabolic waste products. One metabolic waste product of interest is lactic acid (lactate), overaccumulation of which can decrease cellular growth and protein production. Current methods for the detection of lactate are limited in terms of cost, sensitivity, and robustness. Therefore, we developed a whole-cell Escherichia coli lactate biosensor based on the lldPRD operon and successfully used it to monitor lactate concentration in mammalian cell cultures. Using real samples and analytical validation we demonstrate that our biosensor can be used for absolute quantification of metabolites in complex samples with high accuracy, sensitivity, and robustness. Importantly, our whole-cell biosensor was able to detect lactate at concentrations more than two orders of magnitude lower than the industry standard method, making it useful for monitoring lactate concentrations in early phase culture. Given the importance of lactate in a variety of both industrial and clinical contexts we anticipate that our whole-cell biosensor can be used to address a range of interesting biological questions. It also serves as a blueprint for how to capitalize on the wealth of genetic operons for metabolite sensing available in nature for the development of other whole-cell biosensors. Biotechnol. Bioeng. 2017;114: 1290-1300. © 2017 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc.


Assuntos
Bioensaio/instrumentação , Produtos Biológicos/metabolismo , Técnicas Biossensoriais/instrumentação , Avaliação Pré-Clínica de Medicamentos/instrumentação , Escherichia coli/efeitos dos fármacos , Ácido Láctico/metabolismo , Produtos Biológicos/isolamento & purificação , Reatores Biológicos/microbiologia , Avaliação Pré-Clínica de Medicamentos/métodos , Desenho de Equipamento , Análise de Falha de Equipamento , Ácido Láctico/análise , Ácido Láctico/farmacologia , Medições Luminescentes/instrumentação , Medições Luminescentes/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
11.
Biotechnol Bioeng ; 114(7): 1570-1582, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-27869292

RESUMO

Despite the positive effects of mild hypothermic conditions on monoclonal antibody (mAb) productivity (qmAb ) during mammalian cell culture, the impact of reduced culture temperature on mAb Fc-glycosylation and the mechanism behind changes in the glycan composition are not fully established. The lack of knowledge about the regulation of dynamic intracellular processes under mild hypothermia restricts bioprocess optimization. To address this issue, a mathematical model that quantitatively describes Chinese hamster ovary (CHO) cell behavior and metabolism, mAb synthesis and mAb N-linked glycosylation profile before and after the induction of mild hypothermia is constructed. Results from this study show that the model is capable of representing experimental results well in all of the aspects mentioned above, including the N-linked glycosylation profile of mAb produced under mild hypothermia. Most importantly, comparison between model simulation results for different culture temperatures suggests the reduced rates of nucleotide sugar donor production and galactosyltransferase (GalT) expression to be critical contributing factors that determine the variation in Fc-glycan profiles between physiological and mild hypothermic conditions in stable CHO transfectants. This is then confirmed using experimental measurements of GalT expression levels, thereby closing the loop between the experimental and the computational system. The identification of bottlenecks within CHO cell metabolism under mild hypothermic conditions will aid bioprocess optimization, for example, by tailoring feeding strategies to improve NSD production, or manipulating the expression of specific glycosyltransferases through cell line engineering. Biotechnol. Bioeng. 2017;114: 1570-1582. © 2016 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals Inc.


Assuntos
Anticorpos Monoclonais/imunologia , Glicosiltransferases/imunologia , Fragmentos Fc das Imunoglobulinas/imunologia , Modelos Imunológicos , Polissacarídeos/imunologia , Animais , Células CHO , Simulação por Computador , Cricetulus , Glicosilação , Calefação/métodos , Temperatura
12.
Microb Cell Fact ; 15: 29, 2016 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-26849882

RESUMO

BACKGROUND: Multiple cognate gene copy clones have often been used in order to increase the yield of recombinant protein expression in the yeast Pichia pastoris. The method of posttransformational vector amplification (PTVA) has allowed for the efficient generation of multi-copy clones in P. pastoris. However, despite its relative ease and success, this process can be expensive and time consuming. RESULTS: We have developed a modified version of PTVA, called Liquid PTVA, which allows for faster and cheaper selection of multi-copy clones. Cultures are grown in liquid medium with only a final selection carried out on agar plates, reducing overall antibiotic usage and increasing the speed of clone amplification. In addition, it was established that starting PTVA with a single copy clone resulted in higher copy number strains for both traditional plate PTVA and liquid PTVA. Furthermore, using the Zeocin selection marker in liquid PTVA results in strains with higher growth rates, which could be beneficial for recombinant protein production processes. CONCLUSIONS: We present a methodology for creating multi-copy clones that can be achieved over 12 days instead of the traditional 45 and at approximately half the cost.


Assuntos
Dosagem de Genes , Vetores Genéticos/metabolismo , Pichia/genética , Reação em Cadeia da Polimerase/métodos , Transformação Genética , Bleomicina/metabolismo , Células Clonais , Meios de Cultura , Proteínas de Fluorescência Verde/metabolismo , Indicadores e Reagentes , Pichia/crescimento & desenvolvimento , Fatores de Tempo
14.
Biotechnol Bioeng ; 112(6): 1165-76, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25545631

RESUMO

The application of mild hypothermic conditions to cell culture is a routine industrial practice used to improve recombinant protein production. However, a thorough understanding of the regulation of dynamic cellular processes at lower temperatures is necessary to enhance bioprocess design and optimization. In this study, we investigated the impact of mild hypothermia on protein glycosylation. Chinese hamster ovary (CHO) cells expressing a monoclonal antibody (mAb) were cultured at 36.5°C and with a temperature shift to 32°C during late exponential/early stationary phase. Experimental results showed higher cell viability with decreased metabolic rates. The specific antibody productivity increased by 25% at 32°C and was accompanied by a reduction in intracellular nucleotide sugar donor (NSD) concentrations and a decreased proportion of the more processed glycan structures on the mAb constant region. To better understand CHO cell metabolism at 32°C, flux balance analysis (FBA) was carried out and constrained with exometabolite data from stationary phase of cultures with or without a temperature shift. Estimated fluxomes suggested reduced fluxes of carbon species towards nucleotide and NSD synthesis and more energy was used for product formation. Expression of the glycosyltransferases that are responsible for N-linked glycan branching and elongation were significantly lower at 32°C. As a result of mild hypothermia, mAb glycosylation was shown to be affected by both NSD availability and glycosyltransferase expression. The combined experimental/FBA approach generated insight as to how product glycosylation can be impacted by changes in culture temperature. Better feeding strategies can be developed based on the understanding of the metabolic flux distribution.


Assuntos
Anticorpos Monoclonais/química , Anticorpos Monoclonais/metabolismo , Técnicas de Cultura de Células/métodos , Temperatura Baixa , Glicosilação/efeitos da radiação , Processamento de Proteína Pós-Traducional/efeitos da radiação , Animais , Células CHO , Carbono/metabolismo , Cricetulus , Expressão Gênica , Glicosiltransferases/análise , Análise do Fluxo Metabólico , Polissacarídeos/análise , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
15.
Int J Mol Sci ; 15(3): 4492-522, 2014 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-24637934

RESUMO

Glycoproteins represent the largest group of the growing number of biologically-derived medicines. The associated glycan structures and their distribution are known to have a large impact on pharmacokinetics. A modelling framework was developed to provide a link from the extracellular environment and its effect on intracellular metabolites to the distribution of glycans on the constant region of an antibody product. The main focus of this work is the mechanistic in silico reconstruction of the nucleotide sugar donor (NSD) metabolic network by means of 34 species mass balances and the saturation kinetics rates of the 60 metabolic reactions involved. NSDs are the co-substrates of the glycosylation process in the Golgi apparatus and their simulated dynamic intracellular concentration profiles were linked to an existing model describing the distribution of N-linked glycan structures of the antibody constant region. The modelling framework also describes the growth dynamics of the cell population by means of modified Monod kinetics. Simulation results match well to experimental data from a murine hybridoma cell line. The result is a modelling platform which is able to describe the product glycoform based on extracellular conditions. It represents a first step towards the in silico prediction of the glycoform of a biotherapeutic and provides a platform for the optimisation of bioprocess conditions with respect to product quality.


Assuntos
Anticorpos/metabolismo , Glicoproteínas/metabolismo , Redes e Vias Metabólicas , Modelos Biológicos , Algoritmos , Animais , Linhagem Celular , Proliferação de Células , Simulação por Computador , Espaço Extracelular/metabolismo , Glucose/metabolismo , Glutamina/metabolismo , Glicosilação , Complexo de Golgi/metabolismo , Hibridomas , Camundongos , Açúcares de Nucleosídeo Difosfato/metabolismo , Nucleotídeos/metabolismo , Polissacarídeos/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Fatores de Tempo
16.
Biochem Soc Trans ; 41(5): 1146-51, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24059500

RESUMO

Bioprocess monitoring is used to track the progress of a cell culture and ensure that the product quality is maintained. Current schemes for monitoring metabolism rely on offline measurements of samples of the extracellular medium. However, in the era of synthetic biology, it is now possible to design and implement biosensors that consist of biological macromolecules and are able to report on the intracellular environment of cells. The use of fluorescent reporter signals allows non-invasive, non-destructive and online monitoring of the culture, which reduces the delay between measurement and any necessary intervention. The present mini-review focuses on protein-based biosensors that utilize FRET as the signal transduction mechanism. The mechanism of FRET, which utilizes the ratio of emission intensity at two wavelengths, has an inherent advantage of being ratiometric, meaning that small differences in the experimental set-up or biosensor expression level can be normalized away. This allows for more reliable quantitative estimation of the concentration of the target molecule. Existing FRET biosensors that are of potential interest to bioprocess monitoring include those developed for primary metabolites, redox potential, pH and product formation. For target molecules where a biosensor has not yet been developed, some candidate binding domains can be identified from the existing biological databases. However, the remaining challenge is to make the process of developing a FRET biosensor faster and more efficient.


Assuntos
Técnicas Biossensoriais , Transferência Ressonante de Energia de Fluorescência/métodos , Proteínas/química , Humanos , Ligação Proteica , Estrutura Terciária de Proteína , Transdução de Sinais
17.
Anal Biochem ; 443(2): 172-80, 2013 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-24036437

RESUMO

Glycosylation is a critical attribute of therapeutic proteins given its impact on the clinical safety and efficacy of these molecules. The biochemical process of glycosylation is inextricably dependent on metabolism and ensuing availability of nucleotides and nucleotide sugars (NSs) during cell culture. Herein, we present a comprehensive methodology to extract and quantify these metabolites from cultured cells. To establish the full protocol, two methods for the extraction of these compounds were evaluated for efficiency, and the requirement for quenching and washing the sample was assessed. A chromatographic method based on anion exchange has been optimized to separate and quantify eight nucleotides and nine NSs in less than 30 min. Degradation of nucleotides and NSs under extraction conditions was evaluated to aid in selection of the most efficient extraction protocol. We conclude that the optimized chromatographic method is quick, robust, and sensitive for quantifying nucleotides and NSs. Furthermore, our results show that samples taken from cell culture should be treated with 50% v/v acetonitrile and do not require quenching or washing for reliable extraction of nucleotides and NSs. This comprehensive protocol should prove useful in determining the impact of nucleotide and NS metabolism on protein glycosylation.


Assuntos
Carboidratos/isolamento & purificação , Cromatografia Líquida de Alta Pressão/métodos , Nucleotídeos/isolamento & purificação , Animais , Células CHO , Cricetulus , Glicosilação
18.
Microb Cell Fact ; 12: 128, 2013 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-24354594

RESUMO

The success of Pichia pastoris as a heterologous expression system lies predominantly in the impressive yields that can be achieved due to high volumetric productivity. However, low specific productivity still inhibits the potential success of this platform. Multi-(gene) copy clones are potentially a quick and convenient method to increase recombinant protein titer, yet they are not without their pitfalls. It has been more than twenty years since the first reported use of multi-copy clones and it is still an active area of research to find the fastest and most efficient method for generating these strains. It has also become apparent that there is not always a linear correlation between copy number and protein titer, leading to in-depth investigations into how to minimize the negative impact of secretory stress and achieve clonal stability.


Assuntos
Pichia/metabolismo , Resposta a Proteínas não Dobradas/genética , Células Clonais , Dosagem de Genes , Regulação Fúngica da Expressão Gênica , Pichia/genética
19.
Biochem Biophys Res Commun ; 420(2): 473-8, 2012 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-22446326

RESUMO

ER stress is activated in a number of important diseases such as diabetes, cancer, and neurodegeneration, but the molecular interactions governing the response are still being elucidated. In the absence of stress, protein complexes exist between the ER-resident chaperone BiP and three transmembrane signalling molecules which are responsible for signal transmission. Previous results suggested that cofactors might participate in these interactions, but the molecular details are not well understood. We coexpressed BiP and the lumenal domains of each of the three ER stress transducers and copurified the complexes in the presence of ATP and ADP in order to better understand how the complex is formed. ATP, but not ADP, was required to isolate the BiP-IRE1 and the BiP-PERK complexes, but the BiP-ATF6 complex was purified in all conditions tested. Based on the results, we hypothesize that in contrast to its mode of binding ATF6 and unfolded proteins, BiP binds to IRE1 and PERK in a different manner.


Assuntos
Trifosfato de Adenosina/metabolismo , Estresse do Retículo Endoplasmático , Endorribonucleases/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , eIF-2 Quinase/metabolismo , Fator 6 Ativador da Transcrição/metabolismo , Chaperona BiP do Retículo Endoplasmático , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/genética , Humanos , Conformação Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
20.
Bioprocess Biosyst Eng ; 35(6): 1023-33, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22286123

RESUMO

Model-based analysis of cellular metabolism can facilitate our understanding of intracellular kinetics and aid the improvement of cell growth and biological product manufacturing. In this paper, a model-based kinetic study of cytosolic glucose metabolism for two industrially relevant cell lines, Saccharomyces cerevisiae and Chinese hamster ovary (CHO) cells, based on enzyme genetic presence and expression information is described. We have reconstructed the cytosolic glucose metabolism map for S. cerevisiae and CHO cells, containing 18 metabolites and 18 enzymes using information from the Kyoto Encyclopedia of Genes and Genomes (KEGG). Based on this map, we have developed akinetic mathematical model for the pathways involved,considering regulation and/or inhibition by products orco-substrates. The values of the maximum rates of reactions(V(max)) were estimated based on kinetic parameter information and metabolic flux analysis results available in literature, and the resulting simulation results for steady-state metabolite concentrations are in good agreement with published experimental data. Finally, the model was used to analyse how the production of DHAP, an important intermediate in fine chemicals synthesis, could be increased using gene knockout.


Assuntos
Genoma Fúngico/fisiologia , Glucose/genética , Glucose/metabolismo , Modelos Biológicos , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Animais , Células CHO , Cricetinae , Cricetulus , Técnicas de Inativação de Genes
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa