Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Am J Hum Genet ; 108(7): 1342-1349, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34143952

RESUMO

EDEM3 encodes a protein that converts Man8GlcNAc2 isomer B to Man7-5GlcNAc2. It is involved in the endoplasmic reticulum-associated degradation pathway, responsible for the recognition of misfolded proteins that will be targeted and translocated to the cytosol and degraded by the proteasome. In this study, through a combination of exome sequencing and gene matching, we have identified seven independent families with 11 individuals with bi-allelic protein-truncating variants and one individual with a compound heterozygous missense variant in EDEM3. The affected individuals present with an inherited congenital disorder of glycosylation (CDG) consisting of neurodevelopmental delay and variable facial dysmorphisms. Experiments in human fibroblast cell lines, human plasma, and mouse plasma and brain tissue demonstrated decreased trimming of Man8GlcNAc2 isomer B to Man7GlcNAc2, consistent with loss of EDEM3 enzymatic activity. In human cells, Man5GlcNAc2 to Man4GlcNAc2 conversion is also diminished with an increase of Glc1Man5GlcNAc2. Furthermore, analysis of the unfolded protein response showed a reduced increase in EIF2AK3 (PERK) expression upon stimulation with tunicamycin as compared to controls, suggesting an impaired unfolded protein response. The aberrant plasma N-glycan profile provides a quick, clinically available test for validating variants of uncertain significance that may be identified by molecular genetic testing. We propose to call this deficiency EDEM3-CDG.


Assuntos
Proteínas de Ligação ao Cálcio/genética , Defeitos Congênitos da Glicosilação/genética , Retículo Endoplasmático/genética , alfa-Manosidase/genética , Adolescente , Alelos , Proteínas de Ligação ao Cálcio/deficiência , Linhagem Celular , Criança , Pré-Escolar , Defeitos Congênitos da Glicosilação/sangue , Deficiências do Desenvolvimento/genética , Feminino , Glicoproteínas/sangue , Glicosilação , Humanos , Lactente , Deficiência Intelectual/genética , Masculino , Mutação , Linhagem , Polissacarídeos/sangue , Deficiências na Proteostase/genética , alfa-Manosidase/deficiência
2.
Am J Hum Genet ; 107(1): 164-172, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32553196

RESUMO

CNOT1 is a member of the CCR4-NOT complex, which is a master regulator, orchestrating gene expression, RNA deadenylation, and protein ubiquitination. We report on 39 individuals with heterozygous de novo CNOT1 variants, including missense, splice site, and nonsense variants, who present with a clinical spectrum of intellectual disability, motor delay, speech delay, seizures, hypotonia, and behavioral problems. To link CNOT1 dysfunction to the neurodevelopmental phenotype observed, we generated variant-specific Drosophila models, which showed learning and memory defects upon CNOT1 knockdown. Introduction of human wild-type CNOT1 was able to rescue this phenotype, whereas mutants could not or only partially, supporting our hypothesis that CNOT1 impairment results in neurodevelopmental delay. Furthermore, the genetic interaction with autism-spectrum genes, such as ASH1L, DYRK1A, MED13, and SHANK3, was impaired in our Drosophila models. Molecular characterization of CNOT1 variants revealed normal CNOT1 expression levels, with both mutant and wild-type alleles expressed at similar levels. Analysis of protein-protein interactions with other members indicated that the CCR4-NOT complex remained intact. An integrated omics approach of patient-derived genomics and transcriptomics data suggested only minimal effects on endonucleolytic nonsense-mediated mRNA decay components, suggesting that de novo CNOT1 variants are likely haploinsufficient hypomorph or neomorph, rather than dominant negative. In summary, we provide strong evidence that de novo CNOT1 variants cause neurodevelopmental delay with a wide range of additional co-morbidities. Whereas the underlying pathophysiological mechanism warrants further analysis, our data demonstrate an essential and central role of the CCR4-NOT complex in human brain development.


Assuntos
Deficiências do Desenvolvimento/genética , Expressão Gênica/genética , Transtornos do Neurodesenvolvimento/genética , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , RNA/genética , Receptores CCR4/genética , Fatores de Transcrição/genética , Alelos , Feminino , Variação Genética/genética , Haploinsuficiência/genética , Heterozigoto , Humanos , Masculino , Malformações do Sistema Nervoso/genética , Fenótipo , Estabilidade Proteica
3.
Am J Hum Genet ; 105(4): 869-878, 2019 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-31564433

RESUMO

Intellectual disability (ID) is a genetically and clinically heterogeneous disorder, characterized by limited cognitive abilities and impaired adaptive behaviors. In recent years, exome sequencing (ES) has been instrumental in deciphering the genetic etiology of ID. Here, through ES of a large cohort of individuals with ID, we identified two bi-allelic frameshift variants in METTL5, c.344_345delGA (p.Arg115Asnfs∗19) and c.571_572delAA (p.Lys191Valfs∗10), in families of Pakistani and Yemenite origin. Both of these variants were segregating with moderate to severe ID, microcephaly, and various facial dysmorphisms, in an autosomal-recessive fashion. METTL5 is a member of the methyltransferase-like protein family, which encompasses proteins with a seven-beta-strand methyltransferase domain. We found METTL5 expression in various substructures of rodent and human brains and METTL5 protein to be enriched in the nucleus and synapses of the hippocampal neurons. Functional studies of these truncating variants in transiently transfected orthologous cells and cultured hippocampal rat neurons revealed no effect on the localization of METTL5 but alter its level of expression. Our in silico analysis and 3D modeling simulation predict disruption of METTL5 function by both variants. Finally, mettl5 knockdown in zebrafish resulted in microcephaly, recapitulating the human phenotype. This study provides evidence that biallelic variants in METTL5 cause ID and microcephaly in humans and highlights the essential role of METTL5 in brain development and neuronal function.


Assuntos
Alelos , Genes Recessivos , Deficiência Intelectual/genética , Metiltransferases/genética , Microcefalia/genética , Adolescente , Adulto , Pré-Escolar , Feminino , Humanos , Masculino , Linhagem
4.
Am J Hum Genet ; 105(5): 1048-1056, 2019 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-31668703

RESUMO

NTNG2 encodes netrin-G2, a membrane-anchored protein implicated in the molecular organization of neuronal circuitry and synaptic organization and diversification in vertebrates. In this study, through a combination of exome sequencing and autozygosity mapping, we have identified 16 individuals (from seven unrelated families) with ultra-rare homozygous missense variants in NTNG2; these individuals present with shared features of a neurodevelopmental disorder consisting of global developmental delay, severe to profound intellectual disability, muscle weakness and abnormal tone, autistic features, behavioral abnormalities, and variable dysmorphisms. The variants disrupt highly conserved residues across the protein. Functional experiments, including in silico analysis of the protein structure, in vitro assessment of cell surface expression, and in vitro knockdown, revealed potential mechanisms of pathogenicity of the variants, including loss of protein function and decreased neurite outgrowth. Our data indicate that appropriate expression of NTNG2 plays an important role in neurotypical development.


Assuntos
Proteínas Ligadas por GPI/genética , Mutação de Sentido Incorreto/genética , Netrinas/genética , Transtornos do Neurodesenvolvimento/genética , Adolescente , Adulto , Criança , Pré-Escolar , Exoma/genética , Feminino , Homozigoto , Humanos , Deficiência Intelectual/genética , Masculino , Linhagem , Sequenciamento do Exoma/métodos , Adulto Jovem
5.
Am J Hum Genet ; 103(6): 1045-1052, 2018 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-30526862

RESUMO

We describe six persons from three families with three homozygous protein truncating variants in PUS7: c.89_90del (p.Thr30Lysfs∗20), c.1348C>T (p.Arg450∗), and a deletion of the penultimate exon 15. All these individuals have intellectual disability with speech delay, short stature, microcephaly, and aggressive behavior. PUS7 encodes the RNA-independent pseudouridylate synthase 7. Pseudouridylation is the most abundant post-transcriptional modification in RNA, which is primarily thought to stabilize secondary structures of RNA. We show that the disease-related variants lead to abolishment of PUS7 activity on both tRNA and mRNA substrates. Moreover, pus7 knockout in Drosophila melanogaster results in a number of behavioral defects, including increased activity, disorientation, and aggressiveness supporting that neurological defects are caused by PUS7 variants. Our findings demonstrate that RNA pseudouridylation by PUS7 is essential for proper neuronal development and function.


Assuntos
Agressão/fisiologia , Nanismo/genética , Variação Genética/genética , Deficiência Intelectual/genética , Transtornos do Desenvolvimento da Linguagem/genética , Microcefalia/genética , Adolescente , Animais , Criança , Drosophila melanogaster/genética , Éxons/genética , Feminino , Técnicas de Inativação de Genes/métodos , Homozigoto , Humanos , Masculino , Linhagem , Fenótipo , RNA Mensageiro/genética , RNA de Transferência/genética
6.
Genet Med ; 23(7): 1246-1254, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33824500

RESUMO

PURPOSE: To elucidate the novel molecular cause in families with a new autosomal recessive neurodevelopmental disorder. METHODS: A combination of exome sequencing and gene matching tools was used to identify pathogenic variants in 17 individuals. Quantitative reverse transcription polymerase chain reaction (RT-qPCR) and subcellular localization studies were used to characterize gene expression profile and localization. RESULTS: Biallelic variants in the TMEM222 gene were identified in 17 individuals from nine unrelated families, presenting with intellectual disability and variable other features, such as aggressive behavior, shy character, body tremors, decreased muscle mass in the lower extremities, and mild hypotonia. We found relatively high TMEM222 expression levels in the human brain, especially in the parietal and occipital cortex. Additionally, subcellular localization analysis in human neurons derived from induced pluripotent stem cells (iPSCs) revealed that TMEM222 localizes to early endosomes in the synapses of mature iPSC-derived neurons. CONCLUSION: Our findings support a role for TMEM222 in brain development and function and adds variants in the gene TMEM222 as a novel underlying cause of an autosomal recessive neurodevelopmental disorder.


Assuntos
Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Humanos , Deficiência Intelectual/genética , Transtornos do Neurodesenvolvimento/genética , Linhagem , Sequenciamento do Exoma
7.
Sci Rep ; 13(1): 18550, 2023 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-37899458

RESUMO

Neuronal ceroid lipofuscinosis 6 (CLN6) is a rare and fatal autosomal recessive disease primarily affecting the nervous system in children. It is caused by a pathogenic mutation in the CLN6 gene for which no therapy is available. Employing an untargeted metabolomics approach, we analyzed the metabolic changes in CLN6 subjects to see if this system could potentially yield biomarkers for diagnosis and monitoring disease progression. Neuronal-like cells were derived from human fibroblast lines from CLN6-affected subjects (n = 3) and controls (wild type, n = 3). These were used to assess the potential of a neuronal-like cell-based metabolomics approach to identify CLN6 distinctive and specific biomarkers. The most impacted metabolic profile is associated with sphingolipids, glycerophospholipids metabolism, and calcium signaling. Over 2700 spectral features were screened, and fifteen metabolites were identified that differed significantly between both groups, including the sphingolipids C16 GlcCer, C24 GlcCer, C24:1 GlcCer and glycerophospholipids PG 40:6 and PG 40:7. Of note, these fifteen metabolites were downregulated in the CLN6 disease group. This study is the first to analyze the metabolome of neuronal-like cells with a pathogenic mutation in the CLN6 gene and to provide insights into their metabolomic alterations. This could allow for the development of novel biomarkers for monitoring CLN6 disease.


Assuntos
Proteínas de Membrana , Lipofuscinoses Ceroides Neuronais , Criança , Humanos , Proteínas de Membrana/metabolismo , Lipofuscinoses Ceroides Neuronais/metabolismo , Metabolismo dos Lipídeos , Metabolômica , Glicerofosfolipídeos , Esfingolipídeos , Biomarcadores/metabolismo
9.
Mol Genet Genomic Med ; 7(10): e00861, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31414730

RESUMO

BACKGROUND: Eight different deletions and point variants of the X-chromosomal gene CNKSR2 have been reported in families with males presenting intellectual disability (ID) and epilepsy. Obligate carrier females with a frameshift variant in the N-terminal protein coding part of CNKSR2 or with a deletion of the complete gene are not affected. Only for one C-terminal nonsense variant, two carrier females were mildly affected by seizures without or with mild motor and language delay. METHODS: Exome sequencing was performed in one female child of a Dutch family, presenting seizures, mild ID, facial dysmorphisms, and abnormalities of the extremities. Potential causative variants were validated by Sanger sequencing. X-chromosome-inactivation (XCI) analysis was performed by methylation-sensitive PCR and fragment-length analysis of the androgen-receptor CAG repeat polymorphism. RESULTS: We identified a de novo variant, c.2304G>A (p.(Trp768*)), in the C-terminal protein coding part of the X-chromosomal gene CNKSR2 in a female patient with seizures and mild ID. Sanger sequencing confirmed the presence of this nonsense variant. XCI analysis showed a mild skewing of X inactivation (20:80) in the blood of our patient. Our variant is the second C-terminal-affecting CNKSR2 variant described in neurologically affected females. CONCLUSION: Our results indicate that CNKSR2 nonsense variants in the C-terminal coding part can result in ID with seizures in female variant carriers.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Deficiência Intelectual/diagnóstico , Convulsões/diagnóstico , Encéfalo/diagnóstico por imagem , Criança , Códon sem Sentido , Feminino , Humanos , Deficiência Intelectual/genética , Imageamento por Ressonância Magnética , Convulsões/genética , Sequenciamento do Exoma , Inativação do Cromossomo X
10.
Eur J Hum Genet ; 27(8): 1235-1243, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30914828

RESUMO

Intellectual disability (ID), megalencephaly, frontal predominant pachygyria, and seizures, previously called "thin" lissencephaly, are reported to be caused by recessive variants in CRADD. Among five families of different ethnicities identified, one homozygous missense variant, c.509G>A p.(Arg170His), was of Finnish ancestry. Here we report on the phenotypic variability associated for this potential CRADD founder variant in 22 Finnish individuals. Exome sequencing was used to identify candidate genes in Finnish patients presenting with ID. Targeted Sanger sequencing and restriction enzyme analysis were applied to screen for the c.509G>A CRADD variant in cohorts from Finland. Detailed phenotyping and genealogical studies were performed. Twenty two patients were identified with the c.509G>A p.(Arg170His) homozygous variant in CRADD. The majority of the ancestors originated from Northeastern Finland indicating a founder effect. The hallmark of the disease is frontotemporal predominant pachygyria with mild cortical thickening. All patients show ID of variable severity. Aggressive behavior was found in nearly half of the patients, EEG abnormalities in five patients and megalencephaly in three patients. This study provides detailed data about the phenotypic spectrum of patients with lissencephaly due to a CRADD variant that affects function. High inter- and intrafamilial phenotypic heterogeneity was identified in patients with pachygyria caused by the homozygous CRADD founder variant. The phenotype variability suggests that additional genetic and/or environmental factors play a role in the clinical presentation. Since frontotemporal pachygyria is the hallmark of the disease, brain imaging studies are essential to support the molecular diagnosis for individuals with ID and a CRADD variant.


Assuntos
Proteína Adaptadora de Sinalização CRADD/genética , Efeito Fundador , Predisposição Genética para Doença/genética , Lisencefalia/genética , Mutação de Sentido Incorreto , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Encéfalo/patologia , Saúde da Família , Feminino , Finlândia , Geografia , Homozigoto , Humanos , Lisencefalia/diagnóstico por imagem , Lisencefalia/patologia , Imageamento por Ressonância Magnética/métodos , Masculino , Linhagem , Fenótipo , Sequenciamento do Exoma
11.
PLoS One ; 10(9): e0138314, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26380986

RESUMO

Genetic disorders of the skeleton comprise a large group of more than 450 clinically distinct and genetically heterogeneous diseases associated with mutations in more than 300 genes. Achieving a definitive diagnosis is complicated due to the genetic heterogeneity of these disorders, their individual rarity and their diverse radiographic presentations. We used targeted exome sequencing and designed a 1.4 Mb panel for simultaneous testing of more than 4,800 exons in 309 genes involved in skeletal disorders. DNA from 69 individuals from 66 families with a known or suspected clinical diagnosis of a skeletal disorder was analyzed. Of 36 cases with a specific clinical hypothesis with a known genetic basis, mutations were identified for eight cases (22%). Of 20 cases with a suspected skeletal disorder but without a specific diagnosis, four causative mutations were identified. Also included were 11 cases with a specific skeletal disorder but for which there was at the time no known associated gene. For these cases, one mutation was identified in a known skeletal disease genes, and re-evaluation of the clinical phenotype in this case changed the diagnoses from osteodysplasia syndrome to Apert syndrome. These results suggest that the NGS panel provides a fast, accurate and cost-effective molecular diagnostic tool for identifying mutations in a highly genetically heterogeneous set of disorders such as genetic skeletal disorders. The data also stress the importance of a thorough clinical evaluation before DNA sequencing. The strategy should be applicable to other groups of disorders in which the molecular basis is largely known.


Assuntos
Doenças do Desenvolvimento Ósseo/genética , Exoma/genética , Técnicas de Diagnóstico Molecular/métodos , Análise de Sequência de DNA/métodos , Doenças do Desenvolvimento Ósseo/diagnóstico , Estudos de Coortes , Análise Mutacional de DNA/métodos , Doenças Genéticas Inatas/diagnóstico , Doenças Genéticas Inatas/genética , Predisposição Genética para Doença , Testes Genéticos/métodos , Humanos , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa