Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Inorg Chem ; 63(25): 11870-11883, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38865140

RESUMO

Heterojunctions, particularly those involving BiOBr/BiOI, have attracted significant attention in the field of photocatalysis due to their remarkable properties. In this study, a unique architecture of BiOBr/BiOI was designed to facilitate the rapid transfer of electrons and holes, effectively mitigating the recombination of electron-hole pairs. Accordingly, the BiOBr/BiOI nanosheet heterojunction was anchored on dendritic fibrous nanosilica (DFNS) by the immobilization of Bi2O3 nanodots in DFNS and the subsequent reaction with HBr and then HI vapors at room temperature. The 4 nm-Bi2O3 nanodots acted as a sacrificial template to form BiOX nanosheets by reaction with HX vapors (X = Br, I). The BiOBr/BiOI nanosheet heterojunction with the lateral size remained in the range of 90 to 110 nm and a thickness of 15 nm formed on DFNS, where the BiOBr:BiOI ratio in the product was controlled by the exposure time to HX vapors. The reaction sequence (HBr → HI vapors) was a key for the formation of BiOBr/BiOI nanosheet heterojunction with controlled composition. When the reaction of Bi2O3 nanodots with HI vapor was performed in the reverse sequence (HI→ HBr), the substitution of I- with Br- occurred to form BiOBr sheets on DFNS. The BiOBr/BiOI nanosheet heterojunction anchored on DFNS was used as a visible-light-driven photocatalyst for the decomposition of benzene in water under solar light, and its activity was superior to that of single BiOX nanosheets on DFNS.

2.
J Am Chem Soc ; 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37018652

RESUMO

A highly active and stable Cu-based catalyst for CO2 to CO conversion was demonstrated by creating a strong metal-support interaction (SMSI) between Cu active sites and the TiO2-coated dendritic fibrous nano-silica (DFNS/TiO2) support. The DFNS/TiO2-Cu10 catalyst showed excellent catalytic performance with a CO productivity of 5350 mmol g-1 h-1 (i.e., 53,506 mmol gCu-1 h-1), surpassing that of almost all copper-based thermal catalysts, with 99.8% selectivity toward CO. Even after 200 h of reaction, the catalyst remained active. Moderate initial agglomeration and high dispersion of nanoparticles (NPs) due to SMSI made the catalysts stable. Electron energy loss spectroscopy confirmed the strong interactions between copper NPs and the TiO2 surface, supported by in situ diffuse reflectance infrared Fourier transform spectroscopy and X-ray photoelectron spectroscopy. The H2-temperature programmed reduction (TPR) study showed α, ß, and γ H2-TPR signals, further confirming the presence of SMSI between Cu and TiO2. In situ Raman and UV-vis diffuse reflectance spectroscopy studies provided insights into the role of oxygen vacancies and Ti3+ centers, which were produced by hydrogen, then consumed by CO2, and then again regenerated by hydrogen. These continuous defect generation-regeneration processes during the progress of the reaction allowed long-term high catalytic activity and stability. The in situ studies and oxygen storage complete capacity indicated the key role of oxygen vacancies during catalysis. The in situ time-resolved Fourier transform infrared study provided an understanding of the formation of various reaction intermediates and their conversion to products with reaction time. Based on these observations, we have proposed a CO2 reduction mechanism, which follows a redox pathway assisted by hydrogen.

3.
Acc Chem Res ; 55(10): 1395-1410, 2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35499964

RESUMO

ConspectusSilica-based mesoporous nanomaterials have been widely used for a range of applications. Although mesopore materials (such as MCM-41 and SBA-15) possess high surface area, due to their tubular pore structures, pore accessibility is restricted, which causes limitations in mass transport. A new nanosilica was needed to overcome these challenges, including better accessibility, controllable particle size, and good stability. In 2010, my group invented dendritic fibrous nanosilica (DFNS), which has now become a family of novel nanosilicas. DFNS has several unique properties: (i) Tunable particle sizes (50 to 1200 nm), (ii) high surface area (500 to 1200 m2/g), (iii) tunable pore volume (0.32 to 2.18 cm3/g), (iv) wide pore size distribution (3.7 to 25 nm) characterized by radially oriented pores, (v) controllable fiber density (number of fibers per sphere), (vi) variable pore size and pore volume, (vi) high thermal (∼800 °C) and hydrothermal stability, and (vii) mechanical stability (∼130 MPa). DFNS possesses unique dendritic fibrous morphology, and hence can be reached from all sides and easily accessible. DFNS can now be synthesized using a open refluxing protocol, which allowed the scale-up of the process with a sustainable E-factor. In the last 12 years, the DFNS family of materials has been extensively studied for their formation mechanism and range of applications such as catalysis, solar energy harvesting, CO2 capture, CO2 conversion, sensing, biomedicine, energy storage and many more.This Account discusses the invention of DFNS, its synthesis with tunable particle size, textural properties (surface area, pore volume, and pore size), and fiber density. In addition, the DFNS formation mechanism via the complex interplay of self-assembly, the dynamics, and coalescence of bicontinuous microemulsion droplets (BMDs) is discussed. Finally, applications of DFNS in a range of fields, that include catalysis, photocatalysis, synthesis of plasmonic black gold, nanosponges of aluminosilicates, CO2 capture, and CO2 conversion to fuel, are presented.

4.
Chemistry ; 29(63): e202301932, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37632841

RESUMO

A reaction of fundamental and commercial importance is acetylene semi-hydrogenation. Acetylene impurity in the ethylene feedstock used in the polyethylene industry poisons the Ziegler-Natta catalyst which adversely affects the polymer quality. Pd based catalysts are most often employed for converting acetylene into the main reactant, ethylene, however, it often involves a tradeoff between the conversion and the selectivity and generally requires high temperatures. In this work, bimetallic Pd-Zn nanoparticles capped by hexadecylamine (HDA) have been synthesized by co-digestive ripening of Pd and Zn nanoparticles and studied for semi-hydrogenation of acetylene. The catalyst showed a high selectivity of ~85 % towards ethylene with a high ethylene productivity to the tune of ~4341 µmol g-1 min-1 , at room temperature and atmospheric pressure. It also exhibited excellent stability with ethylene selectivity remaining greater than 85 % even after 70 h on stream. To the best of the authors' knowledge, this is the first report of room temperature acetylene semi-hydrogenation, with the catalyst effecting high amount of acetylene conversion to ethylene retaining excellent selectivity and stability among all the reported catalysts thus far. DFT calculations show that the disordered Pd-Zn nanocatalyst prepared by a low temperature route exhibits a change in the d-band center of Pd and Zn which in turn enhances the selectivity towards ethylene. TPD, XPS and a range of catalysis experiments provided in-depth insights into the reaction mechanism, indicating the key role of particle size, surface area, Pd-Zn interactions, and the capping agent.

5.
Langmuir ; 39(12): 4382-4393, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36920854

RESUMO

Understanding adsorption processes at the molecular level has transformed the discovery of engineered materials for maximizing gas storage capacity and kinetics in adsorption-based carbon capture applications. In this work, we studied the molecular mechanism of gas (CO2, H2, methane, and ethane) adsorption inside an interconnected porous network of carbon. This was achieved by synthesizing novel macro-meso-microporous carbon (M3C) nanospheres with interconnected pore structures. The M3Cs showed a CO2 capture capacity of 5.3 mmol/g at atmospheric CO2 pressure, with excellent kinetics. This was due to fast CO2 adsorption within the interconnected hierarchical macro-meso-microporous M3C. In situ small-angle neutron scattering (SANS) under various CO2 pressures indicated that the macro- and mesopores of M3C enable fast diffusion of CO2 molecules inside the micropores, where adsorbed CO2 molecules densify into a liquid-like state. This strong densification of CO2 molecules causes fast CO2 diffusion in the macro- and mesopores of M3C, restarting the adsorption cycle for fresh CO2 molecules until all pores are completely filled. Notably, M3C also showed good capture capacities for hydrogen and various hydrocarbons, with excellent selectivity toward ethane over methane.

6.
Proc Natl Acad Sci U S A ; 117(12): 6383-6390, 2020 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-32156731

RESUMO

Active and stable metal-free heterogeneous catalysts for CO2 fixation are required to reduce the current high level of carbon dioxide in the atmosphere, which is driving climate change. In this work, we show that defects in nanosilica (E' centers, oxygen vacancies, and nonbridging oxygen hole centers) convert CO2 to methane with excellent productivity and selectivity. Neither metal nor complex organic ligands were required, and the defect alone acted as catalytic sites for carbon dioxide activation and hydrogen dissociation and their cooperative action converted CO2 to methane. Unlike metal catalysts, which become deactivated with time, the defect-containing nanosilica showed significantly better stability. Notably, the catalyst can be regenerated by simple heating in the air without the need for hydrogen gas. Surprisingly, the catalytic activity for methane production increased significantly after every regeneration cycle, reaching more than double the methane production rate after eight regeneration cycles. This activated catalyst remained stable for more than 200 h. Detailed understanding of the role of the various defect sites in terms of their concentrations and proximities as well as their cooperativity in activating CO2 and dissociating hydrogen to produce methane was achieved.

7.
Langmuir ; 38(10): 3139-3148, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35234471

RESUMO

Establishment of an efficient and robust artificial photocatalytic system to convert solar energy into chemical fuels through CO2 conversion is a cherished goal in the fields of clean energy and environmental protection. In this work, we have explored an emergent low-Z nitrogen-rich carbon nitride material g-C3N5 (analogue of g-C3N4) for CO2 conversion under visible light illumination. A significant enhancement of the CH4 production rate was detected for g-C3N5 in comparison to that of g-C3N4. Notably, g-C3N5 also showed a very impressive selectivity of 100% toward CH4 as compared to 21% for g-C3N4. The photocatalytic CO2 conversion was performed without using sacrificial reagents. We found that 1% K doping in g-C3N5 enhanced its performance even further without compromising the selectivity. Moreover, 1% K-doped g-C3N5 also exhibited better photostability than undoped g-C3N5. We have also employed density functional theory calculation-based analyses to understand and elucidate the possible reasons for the better photocatalytic performance of K-doped g-C3N5.

8.
Soft Matter ; 18(27): 5114-5125, 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35766282

RESUMO

We report a detailed study of hierarchically organized silica-polyethylenimine (PEI) microspheres achieved through evaporation-induced assembly. Due to complex interactions between oppositely-charged silica nanoparticles and PEI, non-monotonic jamming of the colloidal particles is manifested. With an increase in the polymer concentration, the local volume fraction of the silica particles decreases from 0.68 to 0.43 and then increases to 0.55 with further increase. The unusual jamming behaviour of the silica colloids in the presence of PEI provides an avenue for immobilizing PEI without reducing the porosity and specific area in contrast to the conventional impregnation approach. The resultant composite microspheres show good thermal stability and CO2 sorption characteristics. For a 33 wt% PEI loading, the microspheres exhibit a significant CO2 capture capacity of 65 mg g-1 even at room temperature and it is increased to 90 mg g-1 at 75 °C. The variation in the CO2 capture capacity at 0 °C as a function of PEI loading also demonstrated the signature of non-monotonicity owing to the structural modification in the silica-PEI microspheres. The composite microspheres demonstrated fast adsorption kinetics reaching 70% of the total capture capacity in one minute during the CO2 capture. The CO2 cycling adsorption-desorption studies showed good regeneration capability up to 20 cycles.

9.
Langmuir ; 37(21): 6423-6434, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34008990

RESUMO

The discovery of dendritic fibrous nanosilica (DFNS) has attracted great attention to the field of catalysis, CO2 capture, drug delivery due to its distinct morphology, and pore size distribution. Despite extensive research, the understanding of the DFNS formation process and its internal structure remains incomplete as microscopy and gas sorption techniques were not able to provide necessary in-depth structural information due to their inherent limitations. In the current work, we present a structural model of DFNS derived using small-angle X-ray scattering (SAXS) supported by 129Xe nuclear magnetic resonance (NMR), which provided intricate details of DFNS and its internal structure. Mechanistic understanding of the DFNS formation and growth process was achieved by performing time-resolved SAXS measurements during the synthesis of DFNS, which unveils the evolution of two levels of a bicontinuous microemulsion structure responsible for intricate DFNS morphology. The validity and the accuracy of the SAXS method and the model were successfully established through a direct correlation among the functionality of the DFNS scattering profile and its pore size distribution, as well as results obtained from the 129Xe NMR studies. It has been established that the DFNS structure originates from direct modulation of the bicontinuous structure controlled by a surfactant, a co-surfactant, and the silicate species formed during hydrolysis and the condensation reaction of the silica precursor.

10.
Langmuir ; 36(42): 12755-12759, 2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33059454

RESUMO

Efficient RNA extraction is critical for all downstream molecular applications and techniques. Despite the availability of several commercial kits, there is an enormous scope to develop novel materials that have high binding and elution capacities. Here, we show that RNA from the cells can be extracted by dendritic fibrous nanosilica (DFNS) with higher efficiency than commercially available silicas. This could be because of the unique fibrous morphology, high accessible surface area, and nanosize particles of DFNS. We studied various fundamental aspects, including the role of particle size, morphology, surface area, and charge on the silica surface in RNA extraction efficiency. Fourier transform infrared (FTIR) spectroscopy studies revealed the interaction of functional groups of RNA with the silica surface, causing selective binding. Due to the sustainable synthesis protocol of DFNS and the simplicity of various buffers and washing solutions used, this RNA extraction kit can be assembled in any lab. In addition to the fundamental aspects of DFNS-RNA interactions, this study has the potential to initiate the development of indigenous DFNS-based kits for RNA extraction.


Assuntos
RNA , Dióxido de Silício , Tamanho da Partícula , RNA/genética , Espectroscopia de Infravermelho com Transformada de Fourier
11.
Inorg Chem ; 57(7): 3671-3674, 2018 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-29533063

RESUMO

A colored hybrid based on a merocyanine adsorbed in a nanoporous-silica-composed dendritic fibrous silica was prepared by adsorption onto the nanoporous silica from a spiropyran solution during UV irradiation (photoinduced adsorption). The obtained red hybrid thus exhibited negative photochromism by visible-light irradiation. The hybrid was further combined with an organophilic clay by a solid-state mixing without using solvent to achieve excellent reversibility of the color change, which was thought to be achieved by molecular diffusion through the two materials, where nanoporous silica and organophilic clay accommodated the colored (merocyanine) and colorless (photogenerated spiropyran) isomers, respectively.

12.
Langmuir ; 33(48): 13774-13782, 2017 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-29111749

RESUMO

We studied the formation mechanism of dendritic fibrous nanosilica (DFNS) that involves several intriguing dynamical steps. Through electron microscopy and real-time small-angle X-ray scattering studies, it has been demonstrated that the structural evolution of bicontinuous microemulsion droplets (BMDs) and their subsequent coalescence, yielding nanoreactor template, is responsible for to the formation of complex DFNS morphology. The role of cosurfactant has been found to be quite crucial, which allowed the understanding of this intricate mechanism involving the complex interplay of self-assembly, dynamics of BMDs formation, and coalescence. The role of BMDs in formation of DFNS has not been reported so far and the present work allows a deeper molecular-level understanding of DFNS formation.

13.
J Phys Chem A ; 121(42): 8080-8085, 2017 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-28972757

RESUMO

The photoinduced adsorption of a photochromic spiropyran (1-(2-hydroxyethyl)-3,3-dimethylindolino-6'-nitrobenzopyrylospiran) onto a dendritic fibrous nanosilica (DFNS) was investigated. By UV irradiation, the colorless suspension containing the spiropyran and DFNS changed to blue without stirring, while it turned to red by the irradiation under stirring. These two colors were attributed to the photogenerated merocyanine in a non polar environment (in toluene, blue) and on a protic environment (on DFNS, red). The long lifetime of the adsorbed merocyanine on DFNS (red) and the easy separation of DFNS from the suspension made it possible to follow the kinetics of the photoinduced adsorption as a pseudo-first order reaction with the rate constant of 0.0279 s-1. The rate limiting process was suggested to be the adsorption of the merocyanine onto DFNS.

14.
Angew Chem Int Ed Engl ; 54(20): 5985-9, 2015 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-25801072

RESUMO

Solid bases, such as SBA-15-oxynitrides, have attracted considerable interest for potential applications as catalysts in important industrial processes. Reported herein is that by simply tuning the temperature of nitridation (ammonolysis), the catalytic activity of these solid bases can be enhanced. Solid-state NMR spectroscopy and XPS studies provided the reasoning behind this change in activity.

15.
Angew Chem Int Ed Engl ; 54(7): 2190-3, 2015 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-25469825

RESUMO

Fibrous nanosilica (KCC-1) oxynitrides are promising solid-base catalysts. Paradoxically, when their nitrogen content increases, their catalytic activity decreases. This counterintuitive observation is explained here for the first time using (15) N-solid-state NMR spectroscopy enhanced by dynamic nuclear polarization.


Assuntos
Nanoestruturas/química , Dióxido de Silício/química , Catálise , Espectroscopia de Ressonância Magnética , Nanoestruturas/ultraestrutura
16.
Langmuir ; 30(36): 10886-98, 2014 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-25188675

RESUMO

The pore size and pore structure of nanoporous materials can affect the materials' physical properties, as well as potential applications in different areas, including catalysis, drug delivery, and biomolecular therapeutics. KCC-1, one of the newest members of silica nanomaterials, possesses fibrous, large pore, dendritic pore networks with wide pore entrances, large pore size distribution, spacious pore volume and large surface area--structural features that are conducive for adsorption and release of large guest molecules and biomacromolecules (e.g., proteins and DNAs). Here, we report the results of our comparative studies of adsorption of salmon DNA in a series of KCC-1-based nanomaterials that are functionalized with different organoamine groups on different parts of their surfaces (channel walls, external surfaces or both). For comparison the results of our studies of adsorption of salmon DNA in similarly functionalized, MCM-41 mesoporous silica nanomaterials with cylindrical pores, some of the most studied silica nanomaterials for drug/gene delivery, are also included. Our results indicate that, despite their relatively lower specific surface area, the KCC-1-based nanomaterials show high adsorption capacity for DNA than the corresponding MCM-41-based nanomaterials, most likely because of KCC-1's large pores, wide pore mouths, fibrous pore network, and thereby more accessible and amenable structure for DNA molecules to diffuse through. Conversely, the MCM-41-based nanomaterials adsorb much less DNA, presumably because their outer surfaces/cylindrical channel pore entrances can get blocked by the DNA molecules, making the inner parts of the materials inaccessible. Moreover, experiments involving fluorescent dye-tagged DNAs suggest that the amine-grafted KCC-1 materials are better suited for delivering the DNAs adsorbed on their surfaces into cellular environments than their MCM-41 counterparts. Finally, cellular toxicity tests show that the KCC-1-based materials are biocompatible. On the basis of these results, the fibrous and porous KCC-1-based nanomaterials can be said to be more suitable to carry, transport, and deliver DNAs and genes than cylindrical porous nanomaterials such as MCM-41.


Assuntos
DNA/química , DNA/genética , Técnicas de Transferência de Genes , Nanoestruturas/química , Dióxido de Silício/química , Adsorção , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Tamanho da Partícula , Porosidade , Salmão , Dióxido de Silício/farmacologia , Relação Estrutura-Atividade , Propriedades de Superfície , Células Tumorais Cultivadas
17.
Nat Commun ; 15(1): 713, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38267414

RESUMO

This study introduces a plasmonic reduction catalyst, stable only in the presence of air, achieved by integrating Pt-doped Ru nanoparticles on black gold. This innovative black gold/RuPt catalyst showcases good efficiency in acetylene semi-hydrogenation, attaining over 90% selectivity with an ethene production rate of 320 mmol g-1 h-1. Its stability, evident in 100 h of operation with continuous air flow, is attributed to the synergy of co-existing metal oxide and metal phases. The catalyst's stability is further enhanced by plasmon-mediated concurrent reduction and oxidation of the active sites. Finite-difference time-domain simulations reveal a five-fold electric field intensification near the RuPt nanoparticles, crucial for activating acetylene and hydrogen. Kinetic isotope effect analysis indicates the contribution from the plasmonic non-thermal effects along with the photothermal. Spectroscopic and in-situ Fourier transform infrared studies, combined with quantum chemical calculations, elucidate the molecular reaction mechanism, emphasizing the cooperative interaction between Ru and Pt in optimizing ethene production and selectivity.

18.
J Phys Chem Lett ; 15(18): 4858-4863, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38668864

RESUMO

The surfaces of nanomaterials with applications in optoelectronics and catalysis control their physicochemical properties. NMR spectroscopy, enhanced by dynamic nuclear polarization (DNP), is a powerful approach to probe the local environment of spin-1/2 nuclei near surfaces. However, this technique often lacks robustness and resolution for half-integer quadrupolar nuclei, which represent more than 66% of the NMR-active isotopes. A novel pulse sequence is introduced here to circumvent these issues. This method is applied to observe with high-resolution 27Al and 17O spin-5/2 nuclei on the surface of γ-alumina. Moreover, we report high-resolution 17O spectra of ZnO nanoparticles used in optoelectronics. Their assignment using DFT calculations allows the first NMR observation of vacancies near the surfaces. Finally, we employ the introduced NMR technique to observe 11B spin-3/2 nuclei on the surface of partially oxidized boron nitride supported on silica and to distinguish its different BO2OH active sites.

19.
ACS Nano ; 17(5): 4526-4538, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36780645

RESUMO

In this work, we have designed and synthesized nickel-laden dendritic plasmonic colloidosomes of Au (black gold-Ni). The photocatalytic CO2 hydrogenation activities of black gold-Ni increased dramatically to the extent that measurable photoactivity was only observed with the black gold-Ni catalyst, with a very high photocatalytic CO production rate (2464 ± 40 mmol gNi-1 h-1) and 95% selectivity. Notably, the reaction was carried out in a flow reactor at low temperature and atmospheric pressure without external heating. The catalyst was stable for at least 100 h. Ultrafast transient absorption spectroscopy studies indicated indirect hot-electron transfer from the black gold to Ni in less than 100 fs, corroborated by a reduction in Au-plasmon electron-phonon lifetime and a bleach signal associated with Ni d-band filling. Photocatalytic reaction rates on excited black gold-Ni showed a superlinear power law dependence on the light intensity, with a power law exponent of 5.6, while photocatalytic quantum efficiencies increased with an increase in light intensity and reaction temperature, which indicated the hot-electron-mediated mechanism. The kinetic isotope effect (KIE) in light (1.91) was higher than that in the dark (∼1), which further indicated the electron-driven plasmonic CO2 hydrogenation. Black gold-Ni catalyzed CO2 hydrogenation in the presence of an electron-accepting molecule, methyl-p-benzoquinone, reduced the CO production rate, asserting the hot-electron-mediated mechanism. Operando diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) showed that CO2 hydrogenation took place by a direct dissociation path via linearly bonded Ni-CO intermediates. The outstanding catalytic performance of black gold-Ni may provide a way to develop plasmonic catalysts for CO2 reduction and other catalytic processes using black gold.

20.
J Colloid Interface Sci ; 652(Pt A): 480-489, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37604059

RESUMO

The photocatalytic carbon dioxide reduction (CO2R) coupled with hydrogen evolution reaction (HER) constitutes a promising step for a sustainable generation of syngas (CO + H2), an essential feedstock for the preparation of several commodity chemicals. Herein, visible light/sunlight-promoted catalytic reduction of CO2 and protons to syngas using rationally designed porphyrin-based 2D porous organic frameworks, POF(Co/Zn) is demonstrated. Indeed, POF(Co) showed superior catalytic performance over the Zn counterpart with CO and H2 generation rates of 1104 and 3981 µmol g-1h-1, respectively. The excellent catalytic performance of Co-based POF is aided by the favorable transfer of photo-excited electrons from Ru-sensitizer to the CoII catalytic site, which is not feasible in the case of POF(Zn), revealed from the theoretical investigation. More importantly, the POF(Co) catalyzes the reduction of CO2 even from dilute gas (13% CO2), surpassing most reported framework-based photocatalytic systems. Significantly, the catalytic performance of POF(Co) was increased under natural sunlight conditions suggesting sunlight-promoted enhancement in syngas generation. The in-depth theoretical investigation further unveiled the comprehensive mechanistic pathway of the light-promoted concurrent CO and H2 generation. This work showcases the advantages of porphyrin-based frameworks for visible light/sunlight-promoted syngas generation by utilizing greenhouse gas (CO2) and protons under mild eco-friendly conditions.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa