Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Cereb Blood Flow Metab ; : 271678X241270241, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39113417

RESUMO

The activation of the bradykinin type 2 receptor is intricately involved in acute post-ischemic inflammatory responses. However, its precise role in different stages of ischemic injury, especially in the chronic phase, remains unclear. Following simultaneous cerebral and retinal ischemia, bradykinin type 2 receptor knockout mice and their controls were longitudinally monitored for 35 days via magnetic resonance imaging, fundus photography, fluorescein angiography, behavioral assessments, vascular permeability measurements, and immunohistochemistry, as well as glycemic status assessments. Without impacting the lesion size, bradykinin type 2 receptor deficiency reduced acute cerebral vascular permeability preventing the loss of pericytes and tight junctions. In the chronic phase of ischemia, however, it resulted in increased astrogliosis and cortical neuronal loss, as well as higher functional deficits. The retinal findings demonstrated a similar pattern. Bradykinin type 2 receptor deficiency delayed, but exacerbated the development of retinal necrosis, increased subacute vascular permeability, and promoted retinal ganglion cell loss in the chronic phase of ischemia. This investigation sheds light on the temporal dynamic of bradykinin type 2 receptor effects in ischemia, pointing to a therapeutic potential in the subacute and chronic phases of ischemic injury.

2.
Biomolecules ; 14(1)2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38254670

RESUMO

(1) Background: Central nervous system (CNS) development is characterized by dynamic changes in cell proliferation and differentiation. Key regulators of these transitions are the transcription factors such as SOX2 and SOX9. SOX2 is involved in the maintenance of progenitor cell state and neural stem cell multipotency, while SOX9, expressed in neurogenic niches, plays an important role in neuron/glia switch with predominant expression in astrocytes in the adult brain. (2) Methods: To validate SOX2 and SOX9 expression patterns in developing opossum (Monodelphis domestica) cortex, we used immunohistochemistry (IHC) and the isotropic fractionator method on fixed cortical tissue from comparable postnatal ages, as well as dissociated primary neuronal cultures. (3) Results: Neurons positive for both neuronal (TUJ1 or NeuN) and stem cell (SOX2) markers were identified, and their presence was confirmed with all methods and postnatal age groups (P4-6, P6-18, and P30) analyzed. SOX9 showed exclusive staining in non-neuronal cells, and it was coexpressed with SOX2. (4) Conclusions: The persistence of SOX2 expression in developing cortical neurons of M. domestica during the first postnatal month implies the functional role of SOX2 during neuronal differentiation and maturation, which was not previously reported in opossums.


Assuntos
Monodelphis , Células-Tronco Neurais , Fatores de Transcrição SOX , Animais , Monodelphis/genética , Neuroglia , Neurônios , Fatores de Transcrição SOX/genética , Córtex Cerebral/metabolismo
3.
Front Cell Neurosci ; 15: 661492, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33815068

RESUMO

Primary dissociated neuronal cultures have become a standard model for studying central nervous system (CNS) development. Such cultures are predominantly prepared from the hippocampus or cortex of rodents (mice and rats), while other mammals are less used. Here, we describe the establishment and extensive characterization of the primary dissociated neuronal cultures derived from the cortex of the gray South American short-tailed opossums, Monodelphis domestica. Opossums are unique in their ability to fully regenerate their CNS after an injury during their early postnatal development. Thus, we used cortex of postnatal day (P) 3-5 opossum to establish long-surviving and nearly pure neuronal cultures, as well as mixed cultures composed of radial glia cells (RGCs) in which their neurogenic and gliogenic potential was confirmed. Both types of cultures can survive for more than 1 month in vitro. We also prepared neuronal cultures from the P16-18 opossum cortex, which were composed of astrocytes and microglia, in addition to neurons. The long-surviving opossum primary dissociated neuronal cultures represent a novel mammalian in vitro platform particularly useful to study CNS development and regeneration.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa