Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Cell Sci ; 136(10)2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37226882

RESUMO

Vascular endothelial growth factor receptor 2 (VEGFR2, encoded by KDR) regulates endothelial function and angiogenesis. VEGFR2 undergoes ubiquitination that programs this receptor for trafficking and proteolysis, but the ubiquitin-modifying enzymes involved are ill-defined. Herein, we used a reverse genetics screen for the human E2 family of ubiquitin-conjugating enzymes to identify gene products that regulate VEGFR2 ubiquitination and proteolysis. We found that depletion of either UBE2D1 or UBE2D2 in endothelial cells caused a rise in steady-state VEGFR2 levels. This rise in plasma membrane VEGFR2 levels impacted on VEGF-A-stimulated signalling, with increased activation of canonical MAPK, phospholipase Cγ1 and Akt pathways. Analysis of biosynthetic VEGFR2 is consistent with a role for UBE2D enzymes in influencing plasma membrane VEGFR2 levels. Cell-surface-specific biotinylation and recycling studies showed an increase in VEGFR2 recycling to the plasma membrane upon reduction in UBE2D levels. Depletion of either UBE2D1 or UBE2D2 stimulated endothelial tubulogenesis, which is consistent with increased VEGFR2 plasma membrane levels promoting the cellular response to exogenous VEGF-A. Our studies identify a key role for UBE2D1 and UBE2D2 in regulating VEGFR2 function in angiogenesis.


Assuntos
Células Endoteliais , Enzimas de Conjugação de Ubiquitina , Humanos , Enzimas de Conjugação de Ubiquitina/genética , Fator A de Crescimento do Endotélio Vascular , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Ubiquitinação
2.
J Biol Chem ; 299(11): 105325, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37805141

RESUMO

In multicellular organisms, a variety of lipid-protein particles control the systemic flow of triacylglycerides, cholesterol, and fatty acids between cells in different tissues. The chemical modification by oxidation of these particles can trigger pathological responses, mediated by a group of membrane proteins termed scavenger receptors. The lectin-like oxidized low-density lipoprotein (LOX-1) scavenger receptor binds to oxidized low-density lipoprotein (oxLDL) and mediates both signaling and trafficking outcomes. Here, we identified five synthetic proteins termed Affimers from a phage display library, each capable of binding recombinant LOX-1 extracellular (oxLDL-binding) domain with high specificity. These Affimers, based on a phytocystatin scaffold with loop regions of variable sequence, were able to bind to the plasma membrane of HEK293T cells exclusively when human LOX-1 was expressed. Binding and uptake of fluorescently labeled oxLDL by the LOX-1-expressing cell model was inhibited with subnanomolar potency by all 5 Affimers. ERK1/2 activation, stimulated by oxLDL binding to LOX-1, was also significantly inhibited (p < 0.01) by preincubation with LOX-1-specific Affimers, but these Affimers had no direct agonistic effect. Molecular modeling indicated that the LOX-1-specific Affimers bound predominantly via their variable loop regions to the surface of the LOX-1 lectin-like domain that contains a distinctive arrangement of arginine residues previously implicated in oxLDL binding, involving interactions with both subunits of the native, stable scavenger receptor homodimer. These data provide a new class of synthetic tools to probe and potentially modulate the oxLDL/LOX-1 interaction that plays an important role in vascular disease.


Assuntos
Sistema de Sinalização das MAP Quinases , Receptores Depuradores Classe E , Humanos , Receptores Depuradores Classe E/genética , Receptores Depuradores Classe E/química , Receptores Depuradores Classe E/metabolismo , Células HEK293 , Lipoproteínas LDL/metabolismo , Receptores Depuradores/metabolismo , Lectinas/metabolismo
3.
Stem Cells ; 38(3): 410-421, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31746084

RESUMO

In this study, we examined the Ca2+ -permeable Piezo1 channel, a newly identified mechanosensing ion channel, in human dental pulp-derived mesenchymal stem cells (MSCs) and hypothesized that activation of the Piezo1 channel regulates MSC migration via inducing ATP release and activation of the P2 receptor purinergic signaling. The Piezo1 mRNA and protein were readily detected in hDP-MSCs from multiple donors and, consistently, brief exposure to Yoda1, the Piezo1 channel-specific activator, elevated intracellular Ca2+ concentration. Yoda1-induced Ca2+ response was inhibited by ruthenium red or GsMTx4, two Piezo1 channel inhibitors, and also by Piezo1-specific siRNA. Brief exposure to Yoda1 also induced ATP release. Persistent exposure to Yoda1 stimulated MSC migration, which was suppressed by Piezo1-specific siRNA, and also prevented by apyrase, an ATP scavenger, or PPADS, a P2 generic antagonist. Furthermore, stimulation of MSC migration induced by Yoda1 as well as ATP was suppressed by PF431396, a PYK2 kinase inhibitor, or U0126, an inhibitor of the mitogen-activated protein kinase MEK/ERK signaling pathway. Collectively, these results suggest that activation of the Piezo1 channel stimulates MSC migration via inducing ATP release and subsequent activation of the P2 receptor purinergic signaling and downstream PYK2 and MEK/ERK signaling pathways, thus revealing novel insights into the molecular and signaling mechanisms regulating MSC migration. Such findings provide useful information for evolving a full understanding of MSC migration and homing and developing strategies to improve MSC-based translational applications.


Assuntos
Trifosfato de Adenosina/metabolismo , Canais Iônicos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Receptores Purinérgicos P2/metabolismo , Adulto , Movimento Celular , Criança , Feminino , Humanos , Masculino , Transdução de Sinais , Adulto Jovem
4.
Haematologica ; 106(6): 1616-1623, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32354869

RESUMO

Complement C3 binds fibrinogen and compromises fibrin clot lysis thereby enhancing thrombosis risk. We investigated the role of fibrinogen-C3 interaction as a novel therapeutic target to reduce thrombosis risk by analysing: i) consistency in the fibrinolytic properties of C3, ii) binding sites between fibrinogen and C3 and iii) modulation of fibrin clot lysis by manipulating fibrinogen-C3 interactions. Purified fibrinogen and C3 from the same individuals (n=24) were used to assess inter-individual variability in the anti-fibrinolytic effects of C3. Microarray screening and molecular modelling evaluated C3 and fibrinogen interaction sites. Novel synthetic conformational proteins, termed Affimers, were used to modulate C3-fibrinogen interaction and fibrinolysis. C3 purified from patients with type 1 diabetes showed enhanced prolongation of fibrinolysis compared with healthy control protein [195±105 and 522±166 seconds, respectively (p=0.04)], with consistent effects but a wider range (5-51% and 5-18% lysis prolongation, respectively). Peptide microarray screening identified 2 potential C3-fibrinogen interactions sites within fibrinogen ß chain (residues 424-433, 435-445). One fibrinogen-binding Affimer was isolated that displayed sequence identity with C3 in an exposed area of the protein. This Affimer abolished C3-induced prolongation of fibrinolysis (728±25.1 seconds to 632±23.7 seconds, p=0.005) and showed binding to fibrinogen in the same region that is involved in C3-fibrinogen interactions. Moreover, it shortened plasma clot lysis of patients with diabetes, cardiovascular disease or controls by 7-11%. C3 binds fibrinogen ß-chain and disruption of fibrinogen-C3 interaction using Affimer proteins enhances fibrinolysis, which represents a potential novel target tool to reduce thrombosis in high risk individuals.


Assuntos
Fibrinogênio , Trombose , Complemento C3 , Fibrina , Fibrinólise , Humanos , Trombose/tratamento farmacológico , Trombose/etiologia , Trombose/prevenção & controle
5.
Traffic ; 17(1): 53-65, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26459808

RESUMO

Vascular endothelial growth factor A (VEGF-A) regulates many aspects of vascular function. VEGF-A binding to vascular endothelial growth factor receptor 2 (VEGFR2) stimulates endothelial signal transduction and regulates multiple cellular responses. Activated VEGFR2 undergoes ubiquitination but the enzymes that regulate this post-translational modification are unclear. In this study, the de-ubiquitinating enzyme, USP8, is shown to regulate VEGFR2 trafficking, de-ubiquitination, proteolysis and signal transduction. USP8-depleted endothelial cells displayed altered VEGFR2 ubiquitination and production of a unique VEGFR2 extracellular domain proteolytic fragment caused by VEGFR2 accumulation in the endosome-lysosome system. In addition, perturbed VEGFR2 trafficking impaired VEGF-A-stimulated signal transduction in USP8-depleted cells. Thus, regulation of VEGFR2 ubiquitination and de-ubiquitination has important consequences for the endothelial cell response and vascular physiology.


Assuntos
Endopeptidases/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Proteólise , Transdução de Sinais , Ubiquitina Tiolesterase/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Endossomos/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Transporte Proteico , Ubiquitinação
6.
J Biol Chem ; 291(16): 8500-15, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26912656

RESUMO

Plasma membrane vacuolar H(+)-ATPase (V-ATPase) activity of tumor cells is a major factor in control of cytoplasmic and extracellular pH and metastatic potential, but the isoforms involved and the factors governing plasma membrane recruitment remain uncertain. Here, we examined expression, distribution, and activity of V-ATPase isoforms in invasive prostate adenocarcinoma (PC-3) cells. Isoforms 1 and 3 were the most highly expressed forms of membrane subunit a, with a1 and a3 the dominant plasma membrane isoforms. Correlation between plasma membrane V-ATPase activity and invasiveness was limited, but RNAi knockdown of either a isoform did slow cell proliferation and inhibit invasion in vitro Isoform a1 was recruited to the cell surface from the early endosome-recycling complex pathway, its knockdown arresting transferrin receptor recycling. Isoform a3 was associated with the late endosomal/lysosomal compartment. Both a isoforms associated with accessory protein Ac45, knockdown of which stalled transit of a1 and transferrin-transferrin receptor, decreased proton efflux, and reduced cell growth and invasiveness; this latter effect was at least partly due to decreased delivery of the membrane-bound matrix metalloproteinase MMP-14 to the plasma membrane. These data indicate that in prostatic carcinoma cells, a1 and a3 isoform populations predominate in different compartments where they maintain different luminal pH. Ac45 plays a central role in navigating the V-ATPase to the plasma membrane, and hence it is an important factor in expression of the invasive phenotype.


Assuntos
Membrana Celular/enzimologia , Endossomos/enzimologia , ATPases Vacuolares Próton-Translocadoras/metabolismo , Linhagem Celular Tumoral , Membrana Celular/genética , Endossomos/genética , Humanos , Concentração de Íons de Hidrogênio , Isoenzimas/genética , Isoenzimas/metabolismo , Metaloproteinase 14 da Matriz/genética , Metaloproteinase 14 da Matriz/metabolismo , ATPases Vacuolares Próton-Translocadoras/genética
7.
J Biol Chem ; 291(13): 6796-812, 2016 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-26841862

RESUMO

The E3 transcription unit of human species C adenoviruses (Ads) encodes immunomodulatory proteins that mediate direct protection of infected cells. Recently, we described a novel immunomodulatory function for E3/49K, an E3 protein uniquely expressed by species D Ads. E3/49K of Ad19a/Ad64, a serotype that causes epidemic keratokonjunctivitis, is synthesized as a highly glycosylated type I transmembrane protein that is subsequently cleaved, resulting in secretion of its large ectodomain (sec49K). sec49K binds to CD45 on leukocytes, impairing activation and functions of natural killer cells and T cells. E3/49K is localized in the Golgi/trans-Golgi network (TGN), in the early endosomes, and on the plasma membrane, yet the cellular compartment where E3/49K is cleaved and the protease involved remained elusive. Here we show that TGN-localized E3/49K comprises both newly synthesized and recycled molecules. Full-length E3/49K was not detected in late endosomes/lysosomes, but the C-terminal fragment accumulated in this compartment at late times of infection. Inhibitor studies showed that cleavage occurs in a post-TGN compartment and that lysosomotropic agents enhance secretion. Interestingly, the cytoplasmic tail of E3/49K contains two potential sorting motifs, YXXΦ (where Φ represents a bulky hydrophobic amino acid) and LL, that are important for binding the clathrin adaptor proteins AP-1 and AP-2in vitro Surprisingly, mutating the LL motif, either alone or together with YXXΦ, did not prevent proteolytic processing but increased cell surface expression and secretion. Upon brefeldin A treatment, cell surface expression was rapidly lost, even for mutants lacking all known endocytosis motifs. Together with immunofluorescence data, we propose a model for intracellular E3/49K transport whereby cleavage takes place on the cell surface by matrix metalloproteases.


Assuntos
Adenoviridae/imunologia , Proteínas E3 de Adenovirus/química , Membrana Celular/imunologia , Células Epiteliais/imunologia , Fibroblastos/imunologia , Adenoviridae/química , Adenoviridae/patogenicidade , Proteínas E3 de Adenovirus/genética , Proteínas E3 de Adenovirus/imunologia , Motivos de Aminoácidos , Brefeldina A/farmacologia , Linhagem Celular Tumoral , Membrana Celular/virologia , Endossomos/imunologia , Endossomos/virologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/virologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/virologia , Expressão Gênica , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunomodulação , Células Jurkat , Lisossomos/imunologia , Lisossomos/virologia , Dados de Sequência Molecular , Cultura Primária de Células , Estrutura Terciária de Proteína , Proteólise , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Transdução de Sinais , Transfecção , Rede trans-Golgi/imunologia , Rede trans-Golgi/virologia
8.
Stem Cells ; 34(8): 2102-14, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27038239

RESUMO

ATP is an extrinsic signal that can induce an increase in the cytosolic Ca(2+) level ([Ca(2+) ]c ) in mesenchymal stem cells (MSCs). However, the cognate intrinsic mechanisms underlying ATP-induced Ca(2+) signaling in MSCs is still contentious, and their importance in MSC migration remains unknown. In this study, we investigated the molecular mechanisms underlying ATP-induced Ca(2+) signaling and their roles in the regulation of cell migration in human dental pulp MSCs (hDP-MSCs). RT-PCR analysis of mRNA transcripts and interrogation of agonist-induced increases in the [Ca(2+) ]c support that P2X7, P2Y1 , and P2Y11 receptors participate in ATP-induced Ca(2+) signaling. In addition, following P2Y receptor activation, Ca(2+) release-activated Ca(2+) Orai1/Stim1 channel as a downstream mechanism also plays a significant role in ATP-induced Ca(2+) signaling. ATP concentration-dependently stimulates hDP-MSC migration. Pharmacological and genetic interventions of the expression or function of the P2X7, P2Y1 and P2Y11 receptors, and Orai1/Stim1 channel support critical involvement of these Ca(2+) signaling mechanisms in ATP-induced stimulation of hDP-MSC migration. Taken together, this study provide evidence to show that purinergic P2X7, P2Y1 , and P2Y11 receptors and store-operated Orai1/Stim1 channel represent important molecular mechanisms responsible for ATP-induced Ca(2+) signaling in hDP-MSCs and activation of these mechanisms stimulates hDP-MSC migration. Such information is useful in building a mechanistic understanding of MSC homing in tissue homeostasis and developing more efficient MSC-based therapeutic applications. Stem Cells 2016;34:2102-2114.


Assuntos
Trifosfato de Adenosina/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Receptores Purinérgicos/metabolismo , Adulto , Criança , Polpa Dentária/citologia , Espaço Extracelular/metabolismo , Feminino , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Proteínas de Neoplasias/metabolismo , Proteína ORAI1/metabolismo , Molécula 1 de Interação Estromal/metabolismo , Adulto Jovem
9.
Stem Cells ; 32(10): 2714-23, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24916783

RESUMO

Recent data suggest reduced indices of vascular repair in South Asian men, a group at increased risk of cardiovascular events. Outgrowth endothelial cells (OEC) represent an attractive tool to study vascular repair in humans and may offer potential in cell-based repair therapies. We aimed to define and manipulate potential mechanisms of impaired vascular repair in South Asian (SA) men. In vitro and in vivo assays of vascular repair and angiogenesis were performed using OEC derived from SA men and matched European controls, prior defining potentially causal molecular mechanisms. SA OEC exhibited impaired colony formation, migration, and in vitro angiogenesis, associated with decreased expression of the proangiogenic molecules Akt1 and endothelial nitric oxide synthase (eNOS). Transfusion of European OEC into immunodeficient mice after wire-induced femoral artery injury augmented re-endothelialization, in contrast with SA OEC and vehicle; SA OEC also failed to promote angiogenesis after induction of hind limb ischemia. Expression of constitutively active Akt1 (E17KAkt), but not green fluorescent protein control, in SA OEC increased in vitro angiogenesis, which was abrogated by a NOS antagonist. Moreover, E17KAkt expressing SA OEC promoted re-endothelialization of wire-injured femoral arteries, and perfusion recovery of ischemic limbs, to a magnitude comparable with nonmanipulated European OEC. Silencing Akt1 in European OEC recapitulated the functional deficits noted in SA OEC. Reduced signaling via the Akt/eNOS axis is causally linked with impaired OEC-mediated vascular repair in South Asian men. These data prove the principle of rescuing marked reparative dysfunction in OEC derived from these men.


Assuntos
Vasos Sanguíneos/patologia , Células Endoteliais/citologia , Células Endoteliais/enzimologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Cicatrização , Adulto , Animais , Ásia , Demografia , Células Endoteliais/efeitos dos fármacos , Inativação Gênica , Humanos , Insulina/farmacologia , Masculino , Camundongos Nus , Fosforilação/efeitos dos fármacos , Fatores de Risco , População Branca , Cicatrização/efeitos dos fármacos
10.
J Inherit Metab Dis ; 38(4): 753-63, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25868665

RESUMO

Vascular endothelial growth factors (VEGFs) bind to VEGF receptor tyrosine kinases (VEGFRs). The VEGF and VEGFR gene products regulate diverse regulatory pathways in mammalian development, health and disease. The interaction between a particular VEGF and its cognate VEGFR activates multiple signal transduction pathways which regulate different cellular responses including metabolism, gene expression, proliferation, migration, and survival. The family of VEGF isoforms regulate vascular physiology and promote tissue homeostasis. VEGF dysfunction is implicated in major chronic disease states including atherosclerosis, diabetes, and cancer. More recent studies implicate a strong link between response to VEGF and regulation of vascular metabolism. Understanding how this family of multitasking cytokines regulates cell and animal function has implications for treating many different diseases.


Assuntos
Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/fisiologia , Animais , Doença , Saúde , Humanos , Receptores de Fatores de Crescimento do Endotélio Vascular/genética , Transdução de Sinais , Doenças Vasculares/genética , Doenças Vasculares/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética
11.
J Biol Chem ; 288(23): 16704-16714, 2013 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-23612969

RESUMO

Exposure to herbal remedies containing the carcinogen aristolochic acid (AA) has been widespread in some regions of the world. Rare A→T TP53 mutations were recently discovered in AA-associated urothelial cancers. The near absence of these mutations among all other sequenced human tumors suggests that they could be biologically silent. There are no cell banks with established lines derived from human tumors with which to explore the influence of the novel mutants on p53 function and cellular behavior. To investigate their impact, we generated isogenic mutant clones by integrase-mediated cassette exchange at the p53 locus of platform (null) murine embryonic fibroblasts and kidney epithelial cells. Common tumor mutants (R248W, R273C) were compared with the AA-associated mutants N131Y, R249W, and Q104L. Assays of cell proliferation, migration, growth in soft agar, apoptosis, senescence, and gene expression revealed contrasting outcomes on cellular behavior following introduction of N131Y or Q104L. The N131Y mutant demonstrated a phenotype akin to common tumor mutants, whereas Q104L clone behavior resembled that of cells with wild-type p53. Wild-type p53 responses were restored in double-mutant cells harboring N131Y and N239Y, a second-site rescue mutation, suggesting that pharmaceutical reactivation of p53 function in tumors expressing N131Y could have therapeutic benefit. N131Y is likely to contribute directly to tumor phenotype and is a promising candidate biomarker of AA exposure and disease. Rare mutations thus do not necessarily point to sites where amino acid exchanges are phenotypically neutral. Encounter with mutagenic insults targeting cryptic sites can reveal specific signature hotspots.


Assuntos
Ácidos Aristolóquicos/efeitos adversos , Mutagênicos/efeitos adversos , Mutação de Sentido Incorreto , Preparações de Plantas/efeitos adversos , Proteína Supressora de Tumor p53/genética , Neoplasias Uretrais/induzido quimicamente , Neoplasias Uretrais/genética , Substituição de Aminoácidos , Animais , Ácidos Aristolóquicos/farmacologia , Biomarcadores Tumorais , Linhagem Celular Transformada , Humanos , Doença Iatrogênica , Camundongos , Mutagênicos/farmacologia , Preparações de Plantas/farmacologia , Proteína Supressora de Tumor p53/metabolismo , Neoplasias Uretrais/metabolismo , Neoplasias Uretrais/patologia , Urotélio/metabolismo , Urotélio/patologia
12.
Exp Cell Res ; 318(18): 2297-311, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-22796052

RESUMO

Vascular endothelial growth factor A (VEGF-A) is an essential cytokine that regulates endothelial function and angiogenesis. VEGF-A binding to endothelial receptor tyrosine kinases such as VEGFR1 and VEGFR2 triggers cellular responses including survival, proliferation and new blood vessel sprouting. Increased levels of a soluble VEGFR1 splice variant (sFlt-1) correlate with endothelial dysfunction in pathologies such as pre-eclampsia; however the cellular mechanism(s) underlying the regulation and function of sFlt-1 are unclear. Here, we demonstrate the existence of a biphasic stress response in endothelial cells, using serum deprivation as a model of endothelial dysfunction. The early phase is characterized by a high VEGFR2:sFlt-1 ratio, which is reversed in the late phase. A functional consequence is a short-term increase in VEGF-A-stimulated intracellular signaling. In the late phase, sFlt-1 is secreted and deposited at the extracellular matrix. We hypothesized that under stress, increased endothelial sFlt-1 levels reduce VEGF-A bioavailability: VEGF-A treatment induces sFlt-1 expression at the cell surface and VEGF-A silencing inhibits sFlt-1 anchorage to the extracellular matrix. Treatment with recombinant sFlt-1 inhibits VEGF-A-stimulated in vitro angiogenesis and sFlt-1 silencing enhances this process. In this response, increased VEGFR2 levels are regulated by the phosphatidylinositol-3-kinase and PKB/Akt signaling pathways and increased sFlt-1 levels by the ERK1/2 signaling pathway. We conclude that during serum withdrawal, cellular sensing of environmental stress modulates sFlt-1 and VEGFR2 levels, regulating VEGF-A bioavailability and ensuring cell survival takes precedence over cell proliferation and migration. These findings may underpin an important mechanism contributing to endothelial dysfunction in pathological states.


Assuntos
Células Endoteliais da Veia Umbilical Humana/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Movimento Celular , Proliferação de Células , Sobrevivência Celular , Células Endoteliais da Veia Umbilical Humana/citologia , Humanos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transdução de Sinais , Estresse Fisiológico , Fator A de Crescimento do Endotélio Vascular/genética , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
13.
J Biomol Struct Dyn ; : 1-13, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37668008

RESUMO

Triticum aestivum is an important crop worldwide, which is a large source of food grain. T.aestivum demands on developed countries will grow every year, this increase in the demand is profoundly serious especially in the light climate change which would lead to a 29% reduction in final productivity. Rust fungus attacks the T.aestivum, specifically newly planted T.aestivum plants, which block the vascular system, stun, and finally damage grain and tillers. In present study we predict the 3D structure then find the binding pocket and conserved domains for MAPkinase-1 of Puccinia triticina. After that, screen the FungiPAD, PubChem, NPAtlas databases by physicochemical properties, docking, clustering, ADME (Absorption, distribution, metabolism, and excretion) and PAINS (pan assay interference compounds) filter analysis. Through this screening process screen the nine compounds, which are benzovindiflupyr, furametpyr, isopyrazam, fenaminstrobin, and flumorph from Fungicide database: zoxamide, vinclozolin, pentachloronitrobenzene, and dithianon from PubChem database, based on the binding energy, clustering, ADME and PAINS analysis. All these nine compounds bind in the same pocket and show the same pattern of interaction. Among these nine compounds, select the two compounds (PubChem:122087 (-6.96 kcal/mol) and FDBD02904 (-8.62 kcal/mol)) based on binding energy for 100 ns MD simulation and free energy calculation. MD simulation shows stability throughout the simulation, and it shows the sable interaction when compounds bind to the MAPKinase 1 protein which may help to protein kinase pathways in plant defense response. This result helps to design alternative fungicide against the wheat rust disease.Communicated by Ramaswamy H. Sarma.

14.
Struct Chem ; 34(3): 1005-1019, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36467260

RESUMO

The SARS-CoV-2 coronavirus is responsible for the COVID-19 outbreak, which overwhelmed millions of people worldwide; hence, there is an urgency to identify appropriate antiviral drugs. This study focuses on screening compounds that inhibit RNA-dependent RNA-polymerase (RdRp) essential for RNA synthesis required for replication of positive-strand RNA viruses. Computational screening against RdRp using Food and Drug Administration (FDA)-approved drugs identified ten prominent compounds with binding energies of more than - 10.00 kcal/mol, each a potential inhibitor of RdRp. These compounds' binding energy is comparable to known RdRp inhibitors remdesivir (IC50 = 10.09 µM, SI = 4.96) and molnupiravir (EC50 = 0.67 - 2.66 µM) and 0.32-2.03 µM). Remdesivir and molnupiravir have been tested in clinical trial and remain authorized for emergency use in the treatment of COVID-19. In docking simulations, selected compounds are bound to the substrate-binding pocket of RdRp and showed hydrophobic and hydrogen bond interaction. For molecular dynamics simulation, capmatinib, pralsetinib, ponatinib, and tedizolid phosphate were selected from the initial ten candidate compounds. MD simulation indicated that these compounds are stable at 50-ns MD simulation when bound to RdRp protein. The screen hit compounds, remdesivir, molnupiravir, and GS-441524, are bound in the substrate binding pocket with good binding-free energy. As a consequence, capmatinib, pralsetinib, ponatinib, and tedizolid phosphate are potential new inhibitors of RdRp protein with potential of limiting COVID-19 infection by blocking RNA synthesis. Supplementary Information: The online version contains supplementary material available at 10.1007/s11224-022-02072-1.

15.
Biochem Mol Biol Educ ; 51(4): 394-401, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37022101

RESUMO

A challenge in the pandemic era is to implement effective but flexible practical teaching for biological sciences courses. Such teaching needs to deliver conceptual, analytical and practical skills training while having the option to rapidly respond to health and safety issues, local regulations, staff and student concerns. In this paper, we describe a set of cell biology practicals (mini-project) that meets many of these requirements and provides flexibility in providing skills training both through online and in practical laboratory environments. We have used a human adenocarcinoma cell line A431 stably transfected with a fluorescent cell cycle reporter as a biological model to deliver training through discrete work packages encompassing cell culture, fluorescence microscopy, biochemistry and statistics. How such work packages can be modified to, an online format either partially or completely is also described. Furthermore, the activities can be adapted for teaching both undergraduate and postgraduate level courses to ensure effective skills training which is applicable to a wide range of biological degree programs and levels of study.


Assuntos
Disciplinas das Ciências Biológicas , Humanos , Disciplinas das Ciências Biológicas/educação , Estudantes , Currículo , Bioquímica/educação , Laboratórios
16.
Prog Mol Biol Transl Sci ; 194: 109-139, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36631189

RESUMO

The binding of vascular endothelial growth factor (VEGF) superfamily to VEGF receptor tyrosine kinases (VEGFRs) and co-receptors regulates vasculogenesis, angiogenesis and lymphangiogenesis. A recurring theme is that dysfunction in VEGF signaling promotes pathological angiogenesis, an important feature of cancer and pro-inflammatory disease states. Endocytosis of basal (resting) or activated VEGFRs facilitates signal attenuation and endothelial quiescence. However, increasing evidence suggest that activated VEGFRs can continue to signal from intracellular compartments such as endosomes. In this chapter, we focus on the evolving link between VEGFR endocytosis, signaling and turnover and the implications for angiogenesis. There is much interest in how such understanding of VEGFR dynamics can be harnessed therapeutically for a wide range of human disease states.


Assuntos
Receptores de Fatores de Crescimento do Endotélio Vascular , Fator A de Crescimento do Endotélio Vascular , Humanos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Transdução de Sinais , Linfangiogênese/fisiologia , Endocitose
17.
J Biomol Struct Dyn ; : 1-24, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37387589

RESUMO

Human epidermal growth factor receptors (EGFR), namely ErbB1/HER1, ErbB2/HER2/neu, ErbB3/HER3, and ErbB4/HER4, the trans-membrane family of tyrosine kinase receptors, are overexpressed in many types of cancers. These receptors play an important role in cell proliferation, differentiation, invasion, metastasis and angiogenesis including unregulated activation of cancer cells. Overexpression of ErbB1 and ErbB2 that occurs in several types of cancers is associated with poor prognosis leading to resistance to ErbB1-directed therapies. In this connection, promising strategy to overcome the disadvantages of the existing chemotherapeutic drugs is the use of short peptides as anticancer agents. In the present study, we have performed virtual high throughput screening of natural peptides against ErbB1 and ErbB2 to identify potential dual inhibitors and identified five inhibitors based on their binding affinities, ADMET analysis, MD simulation studies and calculation of free energy of binding. These natural peptides could be further exploited for developing drugs for treating cancer.Communicated by Ramaswamy H. Sarma.

18.
Traffic ; 11(1): 161-74, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19883397

RESUMO

Vascular endothelial growth factor A (VEGF-A)-induced signaling through VEGF receptor 2 (VEGFR2) regulates both physiological and pathological angiogenesis in mammals. However, the temporal and spatial mechanism underlying VEGFR2-mediated intracellular signaling is not clear. Here, we define a pathway for VEGFR2 trafficking and proteolysis that regulates VEGF-A-stimulated signaling and endothelial cell migration. Ligand-stimulated VEGFR2 activation and ubiquitination preceded proteolysis and cytoplasmic domain removal associated with endosomes. A soluble VEGFR2 cytoplasmic domain fragment displayed tyrosine phosphorylation and activation of downstream intracellular signaling. Perturbation of endocytosis by the depletion of either clathrin heavy chain or an ESCRT-0 subunit caused differential effects on ligand-stimulated VEGFR2 proteolysis and signaling. This novel VEGFR2 proteolysis was blocked by the inhibitors of 26S proteasome activity. Inhibition of proteasome activity prolonged VEGF-A-induced intracellular signaling to c-Akt and endothelial nitric oxide synthase (eNOS). VEGF-A-stimulated endothelial cell migration was dependent on VEGFR2 and VEGFR tyrosine kinase activity. Inhibition of proteasome activity in this assay stimulated VEGF-A-mediated endothelial cell migration. VEGFR2 endocytosis, ubiquitination and proteolysis could also be stimulated by a protein kinase C-dependent pathway. Thus, removal of the VEGFR2 carboxyl terminus linked to phosphorylation, ubiquitination and trafficking is necessary for VEGF-stimulated endothelial signaling and cell migration.


Assuntos
Células Endoteliais/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Citoplasma/efeitos dos fármacos , Citoplasma/enzimologia , Citoplasma/metabolismo , Eletroforese em Gel de Poliacrilamida , Endossomos/efeitos dos fármacos , Endossomos/enzimologia , Endossomos/metabolismo , Células Endoteliais/enzimologia , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/enzimologia , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Humanos , Ligantes , Lisossomos/efeitos dos fármacos , Lisossomos/enzimologia , Lisossomos/metabolismo , Microscopia de Fluorescência , Neovascularização Patológica/enzimologia , Neovascularização Patológica/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Transporte Proteico
19.
TH Open ; 6(4): e396-e407, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36452200

RESUMO

The vascular obstructive thrombus is composed of a mesh of fibrin fibers with blood cells trapped in these networks. Enhanced fibrin clot formation and/or suppression of fibrinolysis are associated with an increased risk of vascular occlusive events. Inhibitors of coagulation factors and activators of plasminogen have been clinically used to limit fibrin network formation and enhance lysis. While these agents are effective at reducing vascular occlusion, they carry a significant risk of bleeding complications. Fibrin clot lysis, essential for normal hemostasis, is controlled by several factors including the incorporation of antifibrinolytic proteins into the clot. Plasmin inhibitor (PI), a key antifibrinolytic protein, is cross-linked into fibrin networks with higher concentrations of PI documented in fibrin clots and plasma from high vascular risk individuals. This review is focused on exploring PI as a target for the prevention and treatment of vascular occlusive disease. We first discuss the relationship between the PI structure and antifibrinolytic activity, followed by describing the function of the protein in normal physiology and its role in pathological vascular thrombosis. Subsequently, we describe in detail the potential use of PI as a therapeutic target, including the array of methods employed for the modulation of protein activity. Effective and safe inhibition of PI may prove to be an alternative and specific way to reduce vascular thrombotic events while keeping bleeding risk to a minimum. Key Points Plasmin inhibitor (PI) is a key protein that inhibits fibrinolysis and stabilizes the fibrin network.This review is focused on discussing mechanistic pathways for PI action, role of the molecule in disease states, and potential use as a therapeutic target.

20.
Methods Mol Biol ; 2475: 113-124, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35451752

RESUMO

The endothelial response to vascular endothelial growth factor A (VEGF-A) regulates many aspects of animal physiology in health and disease. Such VEGF-A-regulated phenomena include vasculogenesis, angiogenesis, tumor growth and progression. VEGF-A binding to receptor tyrosine kinases such as vascular endothelial growth factor receptor 2 (VEGFR2 ) activates multiple signal transduction pathways and changes in homeostasis, metabolism, gene expression, cell proliferation, migration, and survival. One such VEGF-A-regulated response is a rapid rise in cytosolic calcium ion levels which modulates different biochemical events and impacts on endothelial-specific responses. Here, we present a series of detailed and robust protocols for evaluating ligand-stimulated cytosolic calcium ion flux in endothelial cells. By monitoring an endogenous endothelial transcription factor (NFATc2 ) which displays calcium-sensitive redistribution, we can assess the relevance of cytosolic calcium to protein function. This protocol can be easily applied to both adherent and non-adherent cultured cells to evaluate calcium ion flux in response to exogenous stimuli such as VEGF-A.


Assuntos
Células Endoteliais , Fator A de Crescimento do Endotélio Vascular , Animais , Cálcio/metabolismo , Movimento Celular , Células Cultivadas , Células Endoteliais/metabolismo , Neovascularização Fisiológica/fisiologia , Fosforilação , Transdução de Sinais/fisiologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa