Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Nature ; 524(7565): 356-60, 2015 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-26258299

RESUMO

The typical response of the adult mammalian pulmonary circulation to a low oxygen environment is vasoconstriction and structural remodelling of pulmonary arterioles, leading to chronic elevation of pulmonary artery pressure (pulmonary hypertension) and right ventricular hypertrophy. Some mammals, however, exhibit genetic resistance to hypoxia-induced pulmonary hypertension. We used a congenic breeding program and comparative genomics to exploit this variation in the rat and identified the gene Slc39a12 as a major regulator of hypoxia-induced pulmonary vascular remodelling. Slc39a12 encodes the zinc transporter ZIP12. Here we report that ZIP12 expression is increased in many cell types, including endothelial, smooth muscle and interstitial cells, in the remodelled pulmonary arterioles of rats, cows and humans susceptible to hypoxia-induced pulmonary hypertension. We show that ZIP12 expression in pulmonary vascular smooth muscle cells is hypoxia dependent and that targeted inhibition of ZIP12 inhibits the rise in intracellular labile zinc in hypoxia-exposed pulmonary vascular smooth muscle cells and their proliferation in culture. We demonstrate that genetic disruption of ZIP12 expression attenuates the development of pulmonary hypertension in rats housed in a hypoxic atmosphere. This new and unexpected insight into the fundamental role of a zinc transporter in mammalian pulmonary vascular homeostasis suggests a new drug target for the pharmacological management of pulmonary hypertension.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Hipertensão Pulmonar/metabolismo , Hipóxia/metabolismo , Músculo Liso Vascular/metabolismo , Animais , Animais Congênicos , Arteríolas/metabolismo , Proteínas de Transporte de Cátions/deficiência , Proteínas de Transporte de Cátions/genética , Bovinos , Hipóxia Celular , Proliferação de Células , Células Cultivadas , Cromossomos de Mamíferos/genética , Doença Crônica , Feminino , Técnicas de Silenciamento de Genes , Homeostase , Humanos , Hipertensão Pulmonar/genética , Hipóxia/genética , Espaço Intracelular/metabolismo , Masculino , Músculo Liso Vascular/citologia , Ratos , Ratos Endogâmicos F344 , Ratos Endogâmicos WKY , Zinco/metabolismo
2.
Nucleic Acids Res ; 40(19): 9493-505, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22904080

RESUMO

H3K4me3 is a histone modification that accumulates at the transcription-start site (TSS) of active genes and is known to be important for transcription activation. The way in which H3K4me3 is regulated at TSS and the actual molecular basis of its contribution to transcription remain largely unanswered. To address these questions, we have analyzed the contribution of dKDM5/LID, the main H3K4me3 demethylase in Drosophila, to the regulation of the pattern of H3K4me3. ChIP-seq results show that, at developmental genes, dKDM5/LID localizes at TSS and regulates H3K4me3. dKDM5/LID target genes are highly transcribed and enriched in active RNApol II and H3K36me3, suggesting a positive contribution to transcription. Expression-profiling show that, though weakly, dKDM5/LID target genes are significantly downregulated upon dKDM5/LID depletion. Furthermore, dKDM5/LID depletion results in decreased RNApol II occupancy, particularly by the promoter-proximal Pol llo(ser5) form. Our results also show that ASH2, an evolutionarily conserved factor that locates at TSS and is required for H3K4me3, binds and positively regulates dKDM5/LID target genes. However, dKDM5/LID and ASH2 do not bind simultaneously and recognize different chromatin states, enriched in H3K4me3 and not, respectively. These results indicate that, at developmental genes, dKDM5/LID and ASH2 coordinately regulate H3K4me3 at TSS and that this dynamic regulation contributes to transcription.


Assuntos
Proteínas de Drosophila/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Sítio de Iniciação de Transcrição , Transcrição Gênica , Animais , Linhagem Celular , Drosophila/enzimologia , Drosophila/genética , Drosophila/metabolismo , Histona Desmetilases , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo
3.
Nat Genet ; 51(7): 1137-1148, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31253982

RESUMO

Genetic studies promise to provide insight into the molecular mechanisms underlying type 2 diabetes (T2D). Variants associated with T2D are often located in tissue-specific enhancer clusters or super-enhancers. So far, such domains have been defined through clustering of enhancers in linear genome maps rather than in three-dimensional (3D) space. Furthermore, their target genes are often unknown. We have created promoter capture Hi-C maps in human pancreatic islets. This linked diabetes-associated enhancers to their target genes, often located hundreds of kilobases away. It also revealed >1,300 groups of islet enhancers, super-enhancers and active promoters that form 3D hubs, some of which show coordinated glucose-dependent activity. We demonstrate that genetic variation in hubs impacts insulin secretion heritability, and show that hub annotations can be used for polygenic scores that predict T2D risk driven by islet regulatory variants. Human islet 3D chromatin architecture, therefore, provides a framework for interpretation of T2D genome-wide association study (GWAS) signals.


Assuntos
Cromatina/química , Diabetes Mellitus Tipo 2/genética , Elementos Facilitadores Genéticos , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Secreção de Insulina/genética , Ilhotas Pancreáticas/metabolismo , Cromatina/genética , Estudos de Coortes , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Conformação Molecular , Regiões Promotoras Genéticas
4.
Nat Cell Biol ; 17(5): 615-626, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25915126

RESUMO

The genomic regulatory programmes that underlie human organogenesis are poorly understood. Pancreas development, in particular, has pivotal implications for pancreatic regeneration, cancer and diabetes. We have now characterized the regulatory landscape of embryonic multipotent progenitor cells that give rise to all pancreatic epithelial lineages. Using human embryonic pancreas and embryonic-stem-cell-derived progenitors we identify stage-specific transcripts and associated enhancers, many of which are co-occupied by transcription factors that are essential for pancreas development. We further show that TEAD1, a Hippo signalling effector, is an integral component of the transcription factor combinatorial code of pancreatic progenitor enhancers. TEAD and its coactivator YAP activate key pancreatic signalling mediators and transcription factors, and regulate the expansion of pancreatic progenitors. This work therefore uncovers a central role for TEAD and YAP as signal-responsive regulators of multipotent pancreatic progenitors, and provides a resource for the study of embryonic development of the human pancreas.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ligação a DNA/metabolismo , Células-Tronco Embrionárias/metabolismo , Células-Tronco Multipotentes/metabolismo , Proteínas Nucleares/metabolismo , Pâncreas/metabolismo , Fosfoproteínas/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Animais Geneticamente Modificados , Diferenciação Celular , Linhagem da Célula , Proliferação de Células , Células Cultivadas , Biologia Computacional , Proteínas de Ligação a DNA/genética , Bases de Dados Genéticas , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Humanos , Camundongos Endogâmicos C57BL , Proteínas Nucleares/genética , Organogênese , Pâncreas/embriologia , Fenótipo , Fosfoproteínas/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição de Domínio TEA , Fatores de Tempo , Fatores de Transcrição/genética , Proteínas de Sinalização YAP , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
5.
Nat Genet ; 46(2): 136-143, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24413736

RESUMO

Type 2 diabetes affects over 300 million people, causing severe complications and premature death, yet the underlying molecular mechanisms are largely unknown. Pancreatic islet dysfunction is central in type 2 diabetes pathogenesis, and understanding islet genome regulation could therefore provide valuable mechanistic insights. We have now mapped and examined the function of human islet cis-regulatory networks. We identify genomic sequences that are targeted by islet transcription factors to drive islet-specific gene activity and show that most such sequences reside in clusters of enhancers that form physical three-dimensional chromatin domains. We find that sequence variants associated with type 2 diabetes and fasting glycemia are enriched in these clustered islet enhancers and identify trait-associated variants that disrupt DNA binding and islet enhancer activity. Our studies illustrate how islet transcription factors interact functionally with the epigenome and provide systematic evidence that the dysregulation of islet enhancers is relevant to the mechanisms underlying type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2/genética , Elementos Facilitadores Genéticos/genética , Regulação da Expressão Gênica/genética , Redes Reguladoras de Genes/genética , Ilhotas Pancreáticas/metabolismo , Fatores de Transcrição/metabolismo , Sequência de Bases , Cromatina/genética , Cromatina/metabolismo , Imunoprecipitação da Cromatina , Diabetes Mellitus Tipo 2/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Formaldeído , Estudo de Associação Genômica Ampla , Humanos , Dados de Sequência Molecular , Análise de Sequência de RNA , Fatores de Transcrição/genética , Navegador
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa