Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Antimicrob Agents Chemother ; 55(2): 550-6, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21135191

RESUMO

Artemisone is one of the most promising artemisinin derivatives in clinical trials. Previous studies with radiolabeled artemisinin and dihydroartemisinin have measured uptake in Plasmodium falciparum-infected erythrocytes. Uptake is much greater in infected than in uninfected erythrocytes, but the relative contributions of transport, binding, and metabolism to this process still await definition. In this study, we characterized mechanisms by which [(14)C]artemisone is taken up into uninfected and P. falciparum-infected human erythrocytes in vitro. Radiolabeled artemisone rapidly enters uninfected erythrocytes without much exceeding extracellular concentrations. Unlabeled artemisone does not compete in this process. Radiolabeled artemisone is concentrated greatly by a time- and temperature-dependent mechanism in infected erythrocytes. This uptake is abrogated by unlabeled artemisone. In addition, the uptake of artemisone into three subcellular fractions, and its distribution into these fractions, is examined as a function of parasite maturation. These data are relevant to an understanding of the mechanisms of action of this important class of drugs.


Assuntos
Antimaláricos/metabolismo , Artemisininas/metabolismo , Eritrócitos/metabolismo , Eritrócitos/parasitologia , Plasmodium falciparum/crescimento & desenvolvimento , Radioisótopos de Carbono/metabolismo , Eritrócitos/efeitos dos fármacos , Humanos , Plasmodium falciparum/efeitos dos fármacos
2.
J Eval Clin Pract ; 18(1): 121-7, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20860595

RESUMO

OBJECTIVES: Blood tests are requested for approximately 50% of patients attending the emergency department (ED). The time taken to obtain the results is perceived as a common reason for delay. The objective of this study was therefore to investigate the turnaround time (TAT) for blood results and whether this affects patient length of stay (LOS) and to identify potential areas for improvement. METHODS: A time-in-motion study was performed at the ED of the John Radcliffe Hospital (JRH), Oxford, UK. The duration of each of the stages leading up to receipt of 101 biochemistry and haematology results was recorded, along with the corresponding patient's LOS. RESULTS: The findings reveal that the mean time for haematology results to become available was 1 hour 6 minutes (95% CI: 29 minutes to 2 hours 13 minutes), while biochemistry samples took 1 hour 42 minutes (95% CI: 1 hour 1 minute to 4 hours 21 minutes), with some positive correlation noted with the patient LOS, but no significant variation between different days or shifts. CONCLUSIONS: With the fastest 10% of samples being reported within 35 minutes (haematology) and 1 hour 5 minutes (biochemistry) of request, our study showed that delays can be attributable to laboratory TAT. Given the limited ability to further improve laboratory processes, the solutions to improving TAT need to come from a collaborative and integrated approach that includes strategies before samples reach the laboratory and downstream review of results.


Assuntos
Eficiência Organizacional , Serviço Hospitalar de Emergência , Laboratórios Hospitalares/normas , Tempo de Internação , Inglaterra , Humanos , Fatores de Tempo , Estudos de Tempo e Movimento
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa