Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 186(18): 3921-3944.e25, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37582357

RESUMO

Cancer driver events refer to key genetic aberrations that drive oncogenesis; however, their exact molecular mechanisms remain insufficiently understood. Here, our multi-omics pan-cancer analysis uncovers insights into the impacts of cancer drivers by identifying their significant cis-effects and distal trans-effects quantified at the RNA, protein, and phosphoprotein levels. Salient observations include the association of point mutations and copy-number alterations with the rewiring of protein interaction networks, and notably, most cancer genes converge toward similar molecular states denoted by sequence-based kinase activity profiles. A correlation between predicted neoantigen burden and measured T cell infiltration suggests potential vulnerabilities for immunotherapies. Patterns of cancer hallmarks vary by polygenic protein abundance ranging from uniform to heterogeneous. Overall, our work demonstrates the value of comprehensive proteogenomics in understanding the functional states of oncogenic drivers and their links to cancer development, surpassing the limitations of studying individual cancer types.


Assuntos
Neoplasias , Proteogenômica , Humanos , Neoplasias/genética , Oncogenes , Transformação Celular Neoplásica/genética , Variações do Número de Cópias de DNA
2.
Cell ; 173(2): 305-320.e10, 2018 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-29625049

RESUMO

The Cancer Genome Atlas (TCGA) has catalyzed systematic characterization of diverse genomic alterations underlying human cancers. At this historic junction marking the completion of genomic characterization of over 11,000 tumors from 33 cancer types, we present our current understanding of the molecular processes governing oncogenesis. We illustrate our insights into cancer through synthesis of the findings of the TCGA PanCancer Atlas project on three facets of oncogenesis: (1) somatic driver mutations, germline pathogenic variants, and their interactions in the tumor; (2) the influence of the tumor genome and epigenome on transcriptome and proteome; and (3) the relationship between tumor and the microenvironment, including implications for drugs targeting driver events and immunotherapies. These results will anchor future characterization of rare and common tumor types, primary and relapsed tumors, and cancers across ancestry groups and will guide the deployment of clinical genomic sequencing.


Assuntos
Carcinogênese/genética , Genômica , Neoplasias/patologia , Reparo do DNA/genética , Bases de Dados Genéticas , Genes Neoplásicos , Humanos , Redes e Vias Metabólicas/genética , Instabilidade de Microssatélites , Mutação , Neoplasias/genética , Neoplasias/imunologia , Transcriptoma , Microambiente Tumoral/genética
3.
Cell ; 173(2): 371-385.e18, 2018 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-29625053

RESUMO

Identifying molecular cancer drivers is critical for precision oncology. Multiple advanced algorithms to identify drivers now exist, but systematic attempts to combine and optimize them on large datasets are few. We report a PanCancer and PanSoftware analysis spanning 9,423 tumor exomes (comprising all 33 of The Cancer Genome Atlas projects) and using 26 computational tools to catalog driver genes and mutations. We identify 299 driver genes with implications regarding their anatomical sites and cancer/cell types. Sequence- and structure-based analyses identified >3,400 putative missense driver mutations supported by multiple lines of evidence. Experimental validation confirmed 60%-85% of predicted mutations as likely drivers. We found that >300 MSI tumors are associated with high PD-1/PD-L1, and 57% of tumors analyzed harbor putative clinically actionable events. Our study represents the most comprehensive discovery of cancer genes and mutations to date and will serve as a blueprint for future biological and clinical endeavors.


Assuntos
Neoplasias/patologia , Algoritmos , Antígeno B7-H1/genética , Biologia Computacional , Bases de Dados Genéticas , Entropia , Humanos , Instabilidade de Microssatélites , Mutação , Neoplasias/genética , Neoplasias/imunologia , Análise de Componente Principal , Receptor de Morte Celular Programada 1/genética
4.
Immunity ; 54(2): 367-386.e8, 2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33567262

RESUMO

Understanding the contribution of the host's genetic background to cancer immunity may lead to improved stratification for immunotherapy and to the identification of novel therapeutic targets. We investigated the effect of common and rare germline variants on 139 well-defined immune traits in ∼9000 cancer patients enrolled in TCGA. High heritability was observed for estimates of NK cell and T cell subset infiltration and for interferon signaling. Common variants of IFIH1, TMEM173 (STING1), and TMEM108 were associated with differential interferon signaling and variants mapping to RBL1 correlated with T cell subset abundance. Pathogenic or likely pathogenic variants in BRCA1 and in genes involved in telomere stabilization and Wnt-ß-catenin also acted as immune modulators. Our findings provide evidence for the impact of germline genetics on the composition and functional orientation of the tumor immune microenvironment. The curated datasets, variants, and genes identified provide a resource toward further understanding of tumor-immune interactions.


Assuntos
Mutação em Linhagem Germinativa/genética , Imunoterapia/métodos , Células Matadoras Naturais/imunologia , Linfócitos do Interstício Tumoral/imunologia , Neoplasias/imunologia , Linfócitos T/imunologia , Bases de Dados Genéticas , Feminino , Regulação Neoplásica da Expressão Gênica , Genes BRCA1 , Estudo de Associação Genômica Ampla , Humanos , Interferons/metabolismo , Masculino , Pessoa de Meia-Idade , Neoplasias/genética , Característica Quantitativa Herdável , Proteína p107 Retinoblastoma-Like/genética , Transdução de Sinais/genética , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
5.
Nature ; 623(7986): 432-441, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37914932

RESUMO

Chromatin accessibility is essential in regulating gene expression and cellular identity, and alterations in accessibility have been implicated in driving cancer initiation, progression and metastasis1-4. Although the genetic contributions to oncogenic transitions have been investigated, epigenetic drivers remain less understood. Here we constructed a pan-cancer epigenetic and transcriptomic atlas using single-nucleus chromatin accessibility data (using single-nucleus assay for transposase-accessible chromatin) from 225 samples and matched single-cell or single-nucleus RNA-sequencing expression data from 206 samples. With over 1 million cells from each platform analysed through the enrichment of accessible chromatin regions, transcription factor motifs and regulons, we identified epigenetic drivers associated with cancer transitions. Some epigenetic drivers appeared in multiple cancers (for example, regulatory regions of ABCC1 and VEGFA; GATA6 and FOX-family motifs), whereas others were cancer specific (for example, regulatory regions of FGF19, ASAP2 and EN1, and the PBX3 motif). Among epigenetically altered pathways, TP53, hypoxia and TNF signalling were linked to cancer initiation, whereas oestrogen response, epithelial-mesenchymal transition and apical junction were tied to metastatic transition. Furthermore, we revealed a marked correlation between enhancer accessibility and gene expression and uncovered cooperation between epigenetic and genetic drivers. This atlas provides a foundation for further investigation of epigenetic dynamics in cancer transitions.


Assuntos
Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Neoplasias , Humanos , Hipóxia Celular , Núcleo Celular , Cromatina/genética , Cromatina/metabolismo , Elementos Facilitadores Genéticos/genética , Epigênese Genética/genética , Transição Epitelial-Mesenquimal , Estrogênios/metabolismo , Perfilação da Expressão Gênica , Proteínas Ativadoras de GTPase/metabolismo , Metástase Neoplásica , Neoplasias/classificação , Neoplasias/genética , Neoplasias/patologia , Sequências Reguladoras de Ácido Nucleico/genética , Análise de Célula Única , Fatores de Transcrição/metabolismo
7.
Immunity ; 48(4): 812-830.e14, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29628290

RESUMO

We performed an extensive immunogenomic analysis of more than 10,000 tumors comprising 33 diverse cancer types by utilizing data compiled by TCGA. Across cancer types, we identified six immune subtypes-wound healing, IFN-γ dominant, inflammatory, lymphocyte depleted, immunologically quiet, and TGF-ß dominant-characterized by differences in macrophage or lymphocyte signatures, Th1:Th2 cell ratio, extent of intratumoral heterogeneity, aneuploidy, extent of neoantigen load, overall cell proliferation, expression of immunomodulatory genes, and prognosis. Specific driver mutations correlated with lower (CTNNB1, NRAS, or IDH1) or higher (BRAF, TP53, or CASP8) leukocyte levels across all cancers. Multiple control modalities of the intracellular and extracellular networks (transcription, microRNAs, copy number, and epigenetic processes) were involved in tumor-immune cell interactions, both across and within immune subtypes. Our immunogenomics pipeline to characterize these heterogeneous tumors and the resulting data are intended to serve as a resource for future targeted studies to further advance the field.


Assuntos
Genômica/métodos , Neoplasias , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Feminino , Humanos , Interferon gama/genética , Interferon gama/imunologia , Macrófagos/imunologia , Masculino , Pessoa de Meia-Idade , Neoplasias/classificação , Neoplasias/genética , Neoplasias/imunologia , Prognóstico , Equilíbrio Th1-Th2/fisiologia , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/imunologia , Cicatrização/genética , Cicatrização/imunologia , Adulto Jovem
8.
Bioinformatics ; 40(4)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38565273

RESUMO

MOTIVATION: The interpretation of genomic data is crucial to understand the molecular mechanisms of biological processes. Protein structures play a vital role in facilitating this interpretation by providing functional context to genetic coding variants. However, mapping genes to proteins is a tedious and error-prone task due to inconsistencies in data formats. Over the past two decades, numerous tools and databases have been developed to automatically map annotated positions and variants to protein structures. However, most of these tools are web-based and not well-suited for large-scale genomic data analysis. RESULTS: To address this issue, we introduce 3Dmapper, a stand-alone command-line tool developed in Python and R. It systematically maps annotated protein positions and variants to protein structures, providing a solution that is both efficient and reliable. AVAILABILITY AND IMPLEMENTATION: https://github.com/vicruiser/3Dmapper.


Assuntos
Bancos de Espécimes Biológicos , Software , Proteínas/química , Genômica
9.
Bioinformatics ; 38(12): 3181-3191, 2022 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-35512388

RESUMO

MOTIVATION: The analysis of cancer genomes provides fundamental information about its etiology, the processes driving cell transformation or potential treatments. While researchers and clinicians are often only interested in the identification of oncogenic mutations, actionable variants or mutational signatures, the first crucial step in the analysis of any tumor genome is the identification of somatic variants in cancer cells (i.e. those that have been acquired during their evolution). For that purpose, a wide range of computational tools have been developed in recent years to detect somatic mutations in sequencing data from tumor samples. While there have been some efforts to benchmark somatic variant calling tools and strategies, the extent to which variant calling decisions impact the results of downstream analyses of tumor genomes remains unknown. RESULTS: Here, we quantify the impact of variant calling decisions by comparing the results obtained in three important analyses of cancer genomics data (identification of cancer driver genes, quantification of mutational signatures and detection of clinically actionable variants) when changing the somatic variant caller (MuSE, MuTect2, SomaticSniper and VarScan2) or the strategy to combine them (Consensus of two, Consensus of three and Union) across all 33 cancer types from The Cancer Genome Atlas. Our results show that variant calling decisions have a significant impact on these analyses, creating important differences that could even impact treatment decisions for some patients. Moreover, the Consensus of three calling strategy to combine the output of multiple variant calling tools, a very widely used strategy by the research community, can lead to the loss of some cancer driver genes and actionable mutations. Overall, our results highlight the limitations of widespread practices within the cancer genomics community and point to important differences in critical analyses of tumor sequencing data depending on variant calling, affecting even the identification of clinically actionable variants. AVAILABILITY AND IMPLEMENTATION: Code is available at https://github.com/carlosgarciaprieto/VariantCallingClinicalBenchmark. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Neoplasias , Humanos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Mutação , Genômica , Neoplasias/genética , Oncogenes , Carcinogênese/genética , Software
11.
PLoS Comput Biol ; 18(1): e1009818, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35073311

RESUMO

The protein structure field is experiencing a revolution. From the increased throughput of techniques to determine experimental structures, to developments such as cryo-EM that allow us to find the structures of large protein complexes or, more recently, the development of artificial intelligence tools, such as AlphaFold, that can predict with high accuracy the folding of proteins for which the availability of homology templates is limited. Here we quantify the effect of the recently released AlphaFold database of protein structural models in our knowledge on human proteins. Our results indicate that our current baseline for structural coverage of 48%, considering experimentally-derived or template-based homology models, elevates up to 76% when including AlphaFold predictions. At the same time the fraction of dark proteome is reduced from 26% to just 10% when AlphaFold models are considered. Furthermore, although the coverage of disease-associated genes and mutations was near complete before AlphaFold release (69% of Clinvar pathogenic mutations and 88% of oncogenic mutations), AlphaFold models still provide an additional coverage of 3% to 13% of these critically important sets of biomedical genes and mutations. Finally, we show how the contribution of AlphaFold models to the structural coverage of non-human organisms, including important pathogenic bacteria, is significantly larger than that of the human proteome. Overall, our results show that the sequence-structure gap of human proteins has almost disappeared, an outstanding success of direct consequences for the knowledge on the human genome and the derived medical applications.


Assuntos
Dobramento de Proteína , Proteoma , Proteômica/métodos , Humanos , Modelos Moleculares , Proteoma/análise , Proteoma/química , Proteoma/metabolismo
12.
Nucleic Acids Res ; 47(D1): D895-D899, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30407596

RESUMO

Our knowledge of cancer genomics exploded in last several years, providing us with detailed knowledge of genetic alterations in almost all cancer types. Analysis of this data gave us new insights into molecular aspects of cancer, most important being the amazing diversity of molecular abnormalities in individual cancers. The most important question in cancer research today is how to classify this diversity to identify subtypes that are most relevant for treatment and outcome prediction for individual patients. The Cancer3D database at http://www.cancer3d.org gives an open and user-friendly way to analyze cancer missense mutations in the context of structures of proteins they are found in and in relation to patients' clinical data. This approach allows users to find novel candidate driver regions for specific subgroups, that often cannot be found when similar analyses are done on the whole gene level and for large, diverse cohorts. Interactive interface allows user to visualize the distribution of mutations in subgroups defined by cancer type and stage, gender and age brackets, patient's ethnicity or vice versa find dominant cancer type, gender or age groups for specific three-dimensional mutation patterns.


Assuntos
Bases de Dados de Proteínas , Mutação de Sentido Incorreto , Neoplasias/genética , Conformação Proteica , Proteínas/genética , Humanos , Domínios Proteicos
13.
Nat Methods ; 14(8): 782-788, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28714987

RESUMO

Understanding genetic events that lead to cancer initiation and progression remains one of the biggest challenges in cancer biology. Traditionally, most algorithms for cancer-driver identification look for genes that have more mutations than expected from the average background mutation rate. However, there is now a wide variety of methods that look for nonrandom distribution of mutations within proteins as a signal for the driving role of mutations in cancer. Here we classify and review such subgene-resolution algorithms, compare their findings on four distinct cancer data sets from The Cancer Genome Atlas and discuss how predictions from these algorithms can be interpreted in the emerging paradigms that challenge the simple dichotomy between driver and passenger genes.


Assuntos
Algoritmos , Carcinogênese/genética , Mapeamento Cromossômico/métodos , Genes Neoplásicos/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Neoplasias/genética , Humanos , Sensibilidade e Especificidade
14.
Nucleic Acids Res ; 43(Database issue): D968-73, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25392415

RESUMO

The new era of cancer genomics is providing us with extensive knowledge of mutations and other alterations in cancer. The Cancer3D database at http://www.cancer3d.org gives an open and user-friendly way to analyze cancer missense mutations in the context of structures of proteins in which they are found. The database also helps users analyze the distribution patterns of the mutations as well as their relationship to changes in drug activity through two algorithms: e-Driver and e-Drug. These algorithms use knowledge of modular structure of genes and proteins to separately study each region. This approach allows users to find novel candidate driver regions or drug biomarkers that cannot be found when similar analyses are done on the whole-gene level. The Cancer3D database provides access to the results of such analyses based on data from The Cancer Genome Atlas (TCGA) and the Cancer Cell Line Encyclopedia (CCLE). In addition, it displays mutations from over 14,700 proteins mapped to more than 24,300 structures from PDB. This helps users visualize the distribution of mutations and identify novel three-dimensional patterns in their distribution.


Assuntos
Bases de Dados de Proteínas , Mutação de Sentido Incorreto , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Antineoplásicos/farmacologia , Biomarcadores Tumorais/análise , Internet , Conformação Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
15.
PLoS Comput Biol ; 11(10): e1004518, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26485003

RESUMO

Despite their importance in maintaining the integrity of all cellular pathways, the role of mutations on protein-protein interaction (PPI) interfaces as cancer drivers has not been systematically studied. Here we analyzed the mutation patterns of the PPI interfaces from 10,028 proteins in a pan-cancer cohort of 5,989 tumors from 23 projects of The Cancer Genome Atlas (TCGA) to find interfaces enriched in somatic missense mutations. To that end we use e-Driver, an algorithm to analyze the mutation distribution of specific protein functional regions. We identified 103 PPI interfaces enriched in somatic cancer mutations. 32 of these interfaces are found in proteins coded by known cancer driver genes. The remaining 71 interfaces are found in proteins that have not been previously identified as cancer drivers even that, in most cases, there is an extensive literature suggesting they play an important role in cancer. Finally, we integrate these findings with clinical information to show how tumors apparently driven by the same gene have different behaviors, including patient outcomes, depending on which specific interfaces are mutated.


Assuntos
Análise Mutacional de DNA/métodos , Proteínas de Neoplasias/genética , Neoplasias/genética , Polimorfismo de Nucleotídeo Único/genética , Mapeamento de Interação de Proteínas/métodos , Transdução de Sinais/genética , Animais , Sequência de Bases , Biomarcadores Tumorais/genética , Catálogos como Assunto , Mapeamento Cromossômico , Simulação por Computador , Predisposição Genética para Doença/genética , Humanos , Modelos Genéticos , Dados de Sequência Molecular , Mutação/genética
16.
PLoS Comput Biol ; 11(1): e1004024, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25568936

RESUMO

The promise of personalized cancer medicine cannot be fulfilled until we gain better understanding of the connections between the genomic makeup of a patient's tumor and its response to anticancer drugs. Several datasets that include both pharmacologic profiles of cancer cell lines as well as their genomic alterations have been recently developed and extensively analyzed. However, most analyses of these datasets assume that mutations in a gene will have the same consequences regardless of their location. While this assumption might be correct in some cases, such analyses may miss subtler, yet still relevant, effects mediated by mutations in specific protein regions. Here we study such perturbations by separating effects of mutations in different protein functional regions (PFRs), including protein domains and intrinsically disordered regions. Using this approach, we have been able to identify 171 novel associations between mutations in specific PFRs and changes in the activity of 24 drugs that couldn't be recovered by traditional gene-centric analyses. Our results demonstrate how focusing on individual protein regions can provide novel insights into the mechanisms underlying the drug sensitivity of cancer cell lines. Moreover, while these new correlations are identified using only data from cancer cell lines, we have been able to validate some of our predictions using data from actual cancer patients. Our findings highlight how gene-centric experiments (such as systematic knock-out or silencing of individual genes) are missing relevant effects mediated by perturbations of specific protein regions. All the associations described here are available from http://www.cancer3d.org.


Assuntos
Antineoplásicos , Mutação , Farmacogenética/métodos , Estrutura Terciária de Proteína , Proteínas , Antineoplásicos/química , Antineoplásicos/metabolismo , Linhagem Celular Tumoral , Bases de Dados Genéticas , Humanos , Mutação/genética , Mutação/fisiologia , Medicina de Precisão , Ligação Proteica , Mapas de Interação de Proteínas , Proteínas/química , Proteínas/genética , Proteínas/metabolismo , Análise de Sobrevida
17.
Bioinformatics ; 30(21): 3109-14, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25064568

RESUMO

MOTIVATION: Most approaches used to identify cancer driver genes focus, true to their name, on entire genes and assume that a gene, treated as one entity, has a specific role in cancer. This approach may be correct to describe effects of gene loss or changes in gene expression; however, mutations may have different effects, including their relevance to cancer, depending on which region of the gene they affect. Except for rare and well-known exceptions, there are not enough data for reliable statistics for individual positions, but an intermediate level of analysis, between an individual position and the entire gene, may give us better statistics than the former and better resolution than the latter approach. RESULTS: We have developed e-Driver, a method that exploits the internal distribution of somatic missense mutations between the protein's functional regions (domains or intrinsically disordered regions) to find those that show a bias in their mutation rate as compared with other regions of the same protein, providing evidence of positive selection and suggesting that these proteins may be actual cancer drivers. We have applied e-Driver to a large cancer genome dataset from The Cancer Genome Atlas and compared its performance with that of four other methods, showing that e-Driver identifies novel candidate cancer drivers and, because of its increased resolution, provides deeper insights into the potential mechanism of cancer driver genes identified by other methods. AVAILABILITY AND IMPLEMENTATION: A Perl script with e-Driver and the files to reproduce the results described here can be downloaded from https://github.com/eduardporta/e-Driver.git.


Assuntos
Genes Neoplásicos , Taxa de Mutação , Proteínas de Neoplasias/genética , Genômica/métodos , Humanos , Mutação de Sentido Incorreto , Neoplasias/genética , Software
18.
Nat Commun ; 15(1): 945, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38296945

RESUMO

Age-associated myometrial dysfunction can prompt complications during pregnancy and labor, which is one of the factors contributing to the 7.8-fold increase in maternal mortality in women over 40. Using single-cell/single-nucleus RNA sequencing and spatial transcriptomics, we have constructed a cellular atlas of the aging myometrium from 186,120 cells across twenty perimenopausal and postmenopausal women. We identify 23 myometrial cell subpopulations, including contractile and venous capillary cells as well as immune-modulated fibroblasts. Myometrial aging leads to fewer contractile capillary cells, a reduced level of ion channel expression in smooth muscle cells, and impaired gene expression in endothelial, smooth muscle, fibroblast, perivascular, and immune cells. We observe altered myometrial cell-to-cell communication as an aging hallmark, which associated with the loss of 25 signaling pathways, including those related to angiogenesis, tissue repair, contractility, immunity, and nervous system regulation. These insights may contribute to a better understanding of the complications faced by older individuals during pregnancy and labor.


Assuntos
Trabalho de Parto , Miométrio , Gravidez , Humanos , Feminino , Miométrio/metabolismo , Trabalho de Parto/genética , Trabalho de Parto/metabolismo , Músculo Liso , Envelhecimento/genética , Contração Muscular
19.
Front Immunol ; 14: 1278534, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38124749

RESUMO

The application of B-cell epitope identification to develop therapeutic antibodies and vaccine candidates is well established. However, the validation of epitopes is time-consuming and resource-intensive. To alleviate this, in recent years, multiple computational predictors have been developed in the immunoinformatics community. Brewpitopes is a pipeline that curates bioinformatic B-cell epitope predictions obtained by integrating different state-of-the-art tools. We used additional computational predictors to account for subcellular location, glycosylation status, and surface accessibility of the predicted epitopes. The implementation of these sets of rational filters optimizes in vivo antibody recognition properties of the candidate epitopes. To validate Brewpitopes, we performed a proteome-wide analysis of SARS-CoV-2 with a particular focus on S protein and its variants of concern. In the S protein, we obtained a fivefold enrichment in terms of predicted neutralization versus the epitopes identified by individual tools. We analyzed epitope landscape changes caused by mutations in the S protein of new viral variants that were linked to observed immune escape evidence in specific strains. In addition, we identified a set of epitopes with neutralizing potential in four SARS-CoV-2 proteins (R1AB, R1A, AP3A, and ORF9C). These epitopes and antigenic proteins are conserved targets for viral neutralization studies. In summary, Brewpitopes is a powerful pipeline that refines B-cell epitope bioinformatic predictions during public health emergencies in a high-throughput capacity to facilitate the optimization of experimental validation of therapeutic antibodies and candidate vaccines.


Assuntos
Epitopos de Linfócito B , Vacinas Virais , Humanos , Epitopos de Linfócito B/genética , Epitopos de Linfócito T , Emergências , Saúde Pública , SARS-CoV-2
20.
Cancer Cell ; 41(9): 1567-1585.e7, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37582362

RESUMO

DNA methylation plays a critical role in establishing and maintaining cellular identity. However, it is frequently dysregulated during tumor development and is closely intertwined with other genetic alterations. Here, we leveraged multi-omic profiling of 687 tumors and matched non-involved adjacent tissues from the kidney, brain, pancreas, lung, head and neck, and endometrium to identify aberrant methylation associated with RNA and protein abundance changes and build a Pan-Cancer catalog. We uncovered lineage-specific epigenetic drivers including hypomethylated FGFR2 in endometrial cancer. We showed that hypermethylated STAT5A is associated with pervasive regulon downregulation and immune cell depletion, suggesting that epigenetic regulation of STAT5A expression constitutes a molecular switch for immunosuppression in squamous tumors. We further demonstrated that methylation subtype-enrichment information can explain cell-of-origin, intra-tumor heterogeneity, and tumor phenotypes. Overall, we identified cis-acting DNA methylation events that drive transcriptional and translational changes, shedding light on the tumor's epigenetic landscape and the role of its cell-of-origin.


Assuntos
Metilação de DNA , Neoplasias do Endométrio , Feminino , Humanos , Epigênese Genética , Multiômica , Regulação Neoplásica da Expressão Gênica , Neoplasias do Endométrio/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa