Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 623(7988): 757-764, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37968390

RESUMO

Extreme weather events perturb ecosystems and increasingly threaten biodiversity1. Ecologists emphasize the need to forecast and mitigate the impacts of these events, which requires knowledge of how risk is distributed among species and environments. However, the scale and unpredictability of extreme events complicate risk assessment1-4-especially for large animals (megafauna), which are ecologically important and disproportionately threatened but are wide-ranging and difficult to monitor5. Traits such as body size, dispersal ability and habitat affiliation are hypothesized to determine the vulnerability of animals to natural hazards1,6,7. Yet it has rarely been possible to test these hypotheses or, more generally, to link the short-term and long-term ecological effects of weather-related disturbance8,9. Here we show how large herbivores and carnivores in Mozambique responded to Intense Tropical Cyclone Idai, the deadliest storm on record in Africa, across scales ranging from individual decisions in the hours after landfall to changes in community composition nearly 2 years later. Animals responded behaviourally to rising floodwaters by moving upslope and shifting their diets. Body size and habitat association independently predicted population-level impacts: five of the smallest and most lowland-affiliated herbivore species declined by an average of 28% in the 20 months after landfall, while four of the largest and most upland-affiliated species increased by an average of 26%. We attribute the sensitivity of small-bodied species to their limited mobility and physiological constraints, which restricted their ability to avoid the flood and endure subsequent reductions in the quantity and quality of food. Our results identify general traits that govern animal responses to severe weather, which may help to inform wildlife conservation in a volatile climate.


Assuntos
Tamanho Corporal , Tempestades Ciclônicas , Mamíferos , Animais , Altitude , Biodiversidade , Carnivoridade , Conservação dos Recursos Naturais , Dieta/veterinária , Ecossistema , Clima Extremo , Inundações , Previsões , Herbivoria , Mamíferos/anatomia & histologia , Mamíferos/fisiologia , Moçambique
2.
Proc Natl Acad Sci U S A ; 119(35): e2204400119, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35994662

RESUMO

Ecological niche differences are necessary for stable species coexistence but are often difficult to discern. Models of dietary niche differentiation in large mammalian herbivores invoke the quality, quantity, and spatiotemporal distribution of plant tissues and growth forms but are agnostic toward food plant species identity. Empirical support for these models is variable, suggesting that additional mechanisms of resource partitioning may be important in sustaining large-herbivore diversity in African savannas. We used DNA metabarcoding to conduct a taxonomically explicit analysis of large-herbivore diets across southeastern Africa, analyzing ∼4,000 fecal samples of 30 species from 10 sites in seven countries over 6 y. We detected 893 food plant taxa from 124 families, but just two families-grasses and legumes-accounted for the majority of herbivore diets. Nonetheless, herbivore species almost invariably partitioned food plant taxa; diet composition differed significantly in 97% of pairwise comparisons between sympatric species, and dissimilarity was pronounced even between the strictest grazers (grass eaters), strictest browsers (nongrass eaters), and closest relatives at each site. Niche differentiation was weakest in an ecosystem recovering from catastrophic defaunation, indicating that food plant partitioning is driven by species interactions, and was stronger at low rainfall, as expected if interspecific competition is a predominant driver. Diets differed more between browsers than grazers, which predictably shaped community organization: Grazer-dominated trophic networks had higher nestedness and lower modularity. That dietary differentiation is structured along taxonomic lines complements prior work on how herbivores partition plant parts and patches and suggests that common mechanisms govern herbivore coexistence and community assembly in savannas.


Assuntos
Dieta , Pradaria , Herbivoria , Mamíferos , Plantas , África , Animais , Comportamento Competitivo , Código de Barras de DNA Taxonômico , Dieta/estatística & dados numéricos , Dieta/veterinária , Fabaceae/classificação , Fabaceae/genética , Fezes , Mamíferos/classificação , Mamíferos/fisiologia , Plantas/classificação , Plantas/genética , Poaceae/classificação , Poaceae/genética , Chuva
3.
J Anim Ecol ; 88(5): 780-792, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30825191

RESUMO

Crop raiding by wildlife poses major threats to both wildlife conservation and human well-being in agroecosystems worldwide. These threats are particularly acute in many parts of Africa, where crop raiders include globally threatened megafauna such as elephants, and where smallholder agriculture is a primary source of human livelihood. One framework for understanding herbivore feeding behaviour, the forage-maturation hypothesis, predicts that herbivores should align their movements with intermediate forage biomass (i.e., peak green-up); this phenomenon is known as "surfing the green wave." Crop-raiding elephants, however, often consume not just foliage, but also fruits and tubers (e.g., maize and potatoes), which generally mature after seasonal peaks in photosynthetic activity. Thus, although elephants have been reported to surf the green wave in natural habitats, they may utilize a different strategy in cultivated landscapes by selecting crops that are "browning down." We sought to understand the factors that underpin movement of elephants into agricultural landscapes. In Mozambique's Gorongosa National Park, we used movement data from GPS-collared elephants, together with precipitation records, remotely sensed estimates of landscape greenness (NDVI), DNA-based diet analysis, measurements of plant nutritional quality and survey-based metrics of crop availability to understand spatiotemporal variation in elephant crop-raiding behaviour. Elephants tracked peak NDVI while foraging inside the Park. During the dry season, however, when NDVI within the Park declined and availability of mature crops was high, crop raiding increased dramatically, and elephants consistently selected crop plants that were browning down while foraging in cultivated landscapes. Crops contained significantly higher digestible energy than wild food plants, but comparable (and sometimes lower) levels of digestible protein, suggesting that this foraging strategy maximized energy rather than protein intake. Our study is the first to combine GPS tracking data with high-resolution diet analysis and community-based reporting of crop availability to reveal fine-scale plasticity in foraging behaviour of elephants at the human-wildlife interface. Our results extend the forage-maturation hypothesis by showing that elephants surf waves of plant brown-down in cultivated landscapes. These findings can aid efforts to reduce human-elephant conflict by enabling wildlife managers to prioritize mitigation actions in time and space with limited resources.


Assuntos
Elefantes , África , Animais , Conservação dos Recursos Naturais , Produtos Agrícolas , Ecossistema , Humanos
4.
Ecology ; 104(2): e3921, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36415899

RESUMO

Many populations of consumers consist of relatively specialized individuals that eat only a subset of the foods consumed by the population at large. Although the ecological significance of individual-level diet variation is recognized, such variation is difficult to document, and its underlying mechanisms are poorly understood. Optimal foraging theory provides a useful framework for predicting how individuals might select different diets, positing that animals balance the "opportunity cost" of stopping to eat an available food item against the cost of searching for something more nutritious; diet composition should be contingent on the distribution of food, and individual foragers should be more selective when they have greater energy reserves to invest in searching for high-quality foods. We tested these predicted mechanisms of individual niche differentiation by quantifying environmental (resource heterogeneity) and organismal (nutritional condition) determinants of diet in a widespread browsing antelope (bushbuck, Tragelaphus sylvaticus) in an African floodplain-savanna ecosystem. We quantified individuals' realized dietary niches (taxonomic richness and composition) using DNA metabarcoding of fecal samples collected repeatedly from 15 GPS-collared animals (range 6-14 samples per individual, median 12). Bushbuck diets were structured by spatial heterogeneity and constrained by individual condition. We observed significant individual-level partitioning of food plants by bushbuck both within and between two adjacent habitat types (floodplain and woodland). Individuals with home ranges that were closer together and/or had similar vegetation structure (measured using LiDAR) ate more similar diets, supporting the prediction that heterogeneous resource distribution promotes individual differentiation. Individuals in good nutritional condition had significantly narrower diets (fewer plant taxa), searched their home ranges more intensively (intensity-of-use index), and had higher-quality diets (percent digestible protein) than those in poor condition, supporting the prediction that animals with greater endogenous reserves have narrower realized niches because they can invest more time in searching for nutritious foods. Our results support predictions from optimal foraging theory about the energetic basis of individual-level dietary variation and provide a potentially generalizable framework for understanding how individuals' realized niche width is governed by animal behavior and physiology in heterogeneous landscapes.


Assuntos
Ecossistema , Herbivoria , Animais , Dieta/veterinária , Florestas , Alimentos
5.
PLoS One ; 16(7): e0255056, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34293065

RESUMO

Grassy biomes such as savannas are maintained by an interacting suite of ecosystem processes from herbivory to rainfall to fire. Many studies have examined the impacts of large mammalian herbivores on herbaceous plant communities, but few of these studies have been conducted in humid, fertile savannas. We present the findings of a short-term experiment that investigated the effects of herbivory in a fertile, humid, and semi-managed savanna. We erected large-herbivore exclosures in Alas Purwo National Park, Java, Indonesia where rainfall is high and fire is suppressed to test how herbivores impact plant community development across the growing season. Where large mammalian herbivores were excluded, herbaceous plant communities contained more non-grasses and were less similar; diverging in their composition as the growing season progressed. Effects of herbivore exclusion on plant species richness, evenness, and biomass per quadrat were generally weak. Notably, however, two weedy plant species (one native, Imperata cylindrica and one introduced, Senna cf. tora) appeared to benefit most from herbivore release. Our results suggest that heavy grazing pressure by native large mammalian herbivores controlled the composition of the herbaceous plant community. Moreover, exclusion of large mammalian herbivores led to divergence in the plant species composition of exclosures; compositional dissimilarity between herbivore-exclusion plots was higher than between plots exposed to large mammalian herbivores. Our findings suggest that, at this high-rainfall site, large mammalian herbivores constrained the developmental trajectory of plant communities across the growing season.


Assuntos
Pradaria , Herbivoria/fisiologia , Mamíferos/fisiologia , Plantas , Animais , Geografia , Indonésia , Estações do Ano , Especificidade da Espécie
6.
Nat Ecol Evol ; 4(5): 712-724, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31932702

RESUMO

Trophic rewilding seeks to rehabilitate degraded ecosystems by repopulating them with large animals, thereby re-establishing strong top-down interactions. Yet there are very few tests of whether such initiatives can restore ecosystem structure and functions, and on what timescales. Here we show that war-induced collapse of large-mammal populations in Mozambique's Gorongosa National Park exacerbated woody encroachment by the invasive shrub Mimosa pigra-considered one of the world's 100 worst invasive species-and that one decade of concerted trophic rewilding restored this invasion to pre-war baseline levels. Mimosa occurrence increased between 1972 and 2015, a period encompassing the near extirpation of large herbivores during the Mozambican Civil War. From 2015 to 2019, mimosa abundance declined as ungulate biomass recovered. DNA metabarcoding revealed that ruminant herbivores fed heavily on mimosa, and experimental exclosures confirmed the causal role of mammalian herbivory in containing shrub encroachment. Our results provide mechanistic evidence that trophic rewilding has rapidly revived a key ecosystem function (biotic resistance to a notorious woody invader), underscoring the potential for restoring ecological health in degraded protected areas.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Animais , Herbivoria , Espécies Introduzidas , Mamíferos
7.
Science ; 364(6436): 173-177, 2019 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-30846612

RESUMO

Populations of the world's largest carnivores are declining and now occupy mere fractions of their historical ranges. Theory predicts that when apex predators disappear, large herbivores become less fearful, occupy new habitats, and modify those habitats by eating new food plants. Yet experimental support for this prediction has been difficult to obtain in large-mammal systems. After the extirpation of leopards and African wild dogs from Mozambique's Gorongosa National Park, forest-dwelling antelopes [bushbuck (Tragelaphus sylvaticus)] expanded into treeless floodplains, where they consumed novel diets and suppressed a common food plant [waterwort (Bergia mossambicensis)]. By experimentally simulating predation risk, we demonstrate that this behavior was reversible. Thus, whereas anthropogenic predator extinction disrupted a trophic cascade by enabling rapid differentiation of prey behavior, carnivore restoration may just as rapidly reestablish that cascade.


Assuntos
Carnívoros , Ecossistema , Extinção Biológica , Comportamento Predatório , Animais , Antílopes , Canidae , Cadeia Alimentar , Florestas , Herbivoria , Moçambique , Parques Recreativos , Dinâmica Populacional
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa